[1] |
AGHAIE-KHAFRI M, MOUSAVI ANIJDAN S H, AMIRKAMALI M. Microstructural evolution under ausforming and aging conditions in 17-4 PH stainless steel [J]. Materials Research Express, 2019, 6(10): 106532.
|
[2] |
COUTURIER L, DE GEUSER F, DESCOINS M, et al. Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment [J]. Materials & Design, 2016, 107: 416-425.
|
[3] |
MURR L E, MARTINEZ E, HERNANDEZ J, et al. Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting [J]. Journal of Materials Research and Technology, 2012, 1(3): 167-177.
|
[4] |
MURAYAMA M, HONO K, KATAYAMA Y. Microstructural evolution in a 17-4 PH stainless steel after aging at 400 ?C [J]. Metallurgical and Materials Transactions A, 1999, 30(2): 345-353.
|
[5] |
HAN G, XIE Z J, LI Z Y, et al. Evolution of crystal structure of Cu precipitates in a low carbon steel [J]. Materials & Design, 2017, 135: 92-101.
|
[6] |
YELI G M, AUGER M A, WILFORD K, et al. Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties [J]. Acta Materialia, 2017, 125: 38-49.
|
[7] |
PARK E S, YOO D K, SUNG J H, et al. Formation of reversed austenite during tempering of 14Cr-7Ni-0.3Nb-0.7Mo-0.03C super martensitic stainless steel [J]. Metals and Materials International, 2004, 10(6): 521-525.
|
[8] |
YE D, LI J, JIANG W, et al. Formation of reversed austenite in high temperature tempering process and its effect on mechanical properties of Cr15 super martensitic stainless steel alloyed with copper [J]. Steel Research International, 2013, 84(4): 395-401.
|
[9] |
BHAMBROO R, ROYCHOWDHURY S, KAIN V, et al. Effect of reverted austenite on mechanical properties of precipitation hardenable 17-4 stainlesssteel [J]. Materials Science and Engineering A, 2013, 568: 127-133.
|
[10] |
MAN C, DONG C F, KONG D C, et al. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel [J]. Corrosion Science, 2019, 151: 108-121.
|
[11] |
FAN Y H, ZHANG B, YI H L, et al. The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel [J]. Acta Materialia, 2017, 139: 188-195.
|
[12] |
SONG Y Y, LI X Y, RONG L J, et al. Reversed austenite in 0Cr13Ni4Mo martensitic stainless steels [J]. Materials Chemistry and Physics, 2014, 143(2): 728-734.
|
[13] |
ZHOU T, PRASATH BABU R, ODQVIST J, et al. Quantitative electron microscopy and physically based modelling of Cu precipitation in precipitation-hardening martensitic stainless steel 15-5 PH [J]. Materials & Design, 2018, 143: 141-149.
|
[14] |
HABIBI BAJGUIRANI H R. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel [J]. Materials Science and Engineering A, 2002, 338(1/2): 142-159.
|
[15] |
SUN Y W, ZHONG Y P, WANG L S. The interaction between ε-copper and dislocation in a high copper 17-4PH steel [J]. Materials Science and Engineering A, 2019, 756: 319-327.
|
[16] |
NIU M C, ZHOU G, WANG W, et al. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel [J]. Acta Materialia, 2019, 179: 296-307.
|
[17] |
CHEN J, LV M Y, TANG S, et al. Influence of cooling paths on microstructural characteristics and precipitation behaviors in a low carbon V-Ti microalloyed steel [J]. Materials Science and Engineering A, 2014, 594: 389-393.
|
[18] |
YEN H W, CHEN P Y, HUANG C Y, et al. Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel [J]. Acta Materialia, 2011, 59(16): 6264-6274.
|
[19] |
LI Z T, CHAI F, YANG L, et al. Mechanical properties and nanoparticles precipitation behavior of multicomponent ultra high strength steel [J]. Materials & Design, 2020, 191: 108637.
|
[20] |
ZHANG C Y, WANG Q F, REN J X, et al. Effect of microstructure on the strength of 25CrMo48V martensitic steel tempered at different temperature and time [J]. Materials & Design, 2012, 36: 220-226.
|
[21] |
LIU H H, FU P X, LIU H W, et al. Effect of vanadium micro-alloying on the microstructure evolution and mechanical properties of 718H pre-hardened mold steel [J]. Journal of Materials Science & Technology, 2019, 35(11): 2526-2536.
|
[22] |
SUN J, WEI S T, LU S P. Influence of vanadium content on the precipitation evolution and mechanical properties of high-strength Fe-Cr-Ni-Mo weld metal [J]. Materials Science and Engineering A, 2020, 772: 138739.
|
[23] |
KAMIKAWA N, SATO K, MIYAMOTO G, et al. Stress-strain behavior of ferrite and bainite with nanoprecipitation in low carbon steels [J]. Acta Materialia, 2015, 83: 383-396.
|