J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (2): 176-189.doi: 10.1007/s12204-021-2383-4
Special Issue: 医学图像
• Medicine-Engineering Interdisciplinary Research • Previous Articles Next Articles
JIA Dengqiang1 * (贾灯强), LUO Xinzhe2 (罗鑫喆), DING Wangbin3 (丁王斌),HUANG Liqin3 (黄立勤), ZHUANG Xiahai2 (庄吓海)
Received:
2021-06-25
Online:
2022-03-28
Published:
2022-05-02
CLC Number:
JIA Dengqiang* (贾灯强), LUO Xinzhe (罗鑫喆), DING Wangbin (丁王斌),HUANG Liqin (黄立勤), ZHUANG Xiahai (庄吓海). SeRN: A Two-Stage Framework of Registration for Semi-Supervised Learning for Medical Images[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 176-189.
[1] | SOTIRAS A, DAVATZIKOS C, PARAGIOS N. Deformable medical image registration: A survey [J].IEEE Transactions on Medical Imaging, 2013, 32(7):1153-1190. |
[2] | VIERGEVER M A, MAINTZ J B A, KLEIN S, et al.A survey of medical image registration-under review [J]. Medical Image Analysis, 2016, 33: 140-144. |
[3] | CAO X, YANG J, ZHANG J, et al. Deformable image registration based on similarity-steered CNN regression[M]//Medical image computing and computer assisted intervention - MICCAI 2017. Cham: Springer,2017: 300-308. |
[4] | KREBS J, MANSI T, DELINGETTE H, et al. Robust non-rigid registration through agent-based action learning [M]//Medical image computing and computer assisted intervention - MICCAI 2017. Cham: Springer,2017: 344-352. |
[5] | ROH′EM M, DATAR M, HEIMANN T, et al. SVFNet: SVF-Net: Learning deformable image registration using shape matching [M]//Medical image computing and computer assisted intervention - MICCAI 2017. Cham: Springer, 2017: 266-274. |
[6] | YANG X, KWITT R, STYNER M, et al. Quicksilver: Fast predictive image registration - A deep learning approach [J]. NeuroImage, 2017, 158: 378-396. |
[7] | DE VOS B D, BERENDSEN F F, VIERGEVER M A, et al. A deep learning framework for unsupervised affine and deformable image registration [J]. Medical Image Analysis, 2019, 52: 128-143. |
[8] | BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: A learning framework for deformable medical image registration [J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 1788-1800. |
[9] | DALCA A V, BALAKRISHNAN G, GUTTAG J, et al. Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces [J]. Medical Image Analysis, 2019, 57: 226-236. |
[10] | HU Y, MODAT M, GIBSON E, et al. Weaklysupervised convolutional neural networks for multimodal image registration [J]. Medical Image Analysis,2018, 49: 1-13. |
[11] | LUO X, ZHUANG X. MvMM-RegNet: A new image registration framework based on multivariate mixture model and neural network estimation [M]//Medical image computing and computer assisted intervention - MICCAI 2020. Cham: Springer, 2020: 149-159. |
[12] | CHEPLYGINA V, DE BRUIJNE M, PLUIM J P W.Not-so-supervised: A survey of semi-supervised, multiinstance,and transfer learning in medical image analysis[J]. Medical Image Analysis, 2019, 54: 280-296. |
[13] | ZHU Z, CAO Y, QIN C, et al. Joint affine and deformable three-dimensional networks for brain MRI registration [J]. Medical Physics, 2021, 48(3): 1182-1196. |
[14] | ESTIENNE T, VAKALOPOULOU M,CHRISTODOULIDIS S, et al. U-ReSNet: Ultimate coupling of registration and segmentation with deep nets [M]//Medical image computing and computer assisted intervention - MICCAI 2019. Cham:Springer, 2019: 310-319. |
[15] | XU Z, NIETHAMMER M. DeepAtlas: Joint semisupervised learning of image registration and segmentation[M]//Medical image computing and computer assisted intervention - MICCAI 2019. Cham: Springer,2019: 420-429. |
[16] | PLUIM J P W, MAINTZ J B A, VIERGEVER M A. Mutual-information-based registration of medical images: A survey [J]. IEEE Transactions on Medical Imaging, 2003, 22(8): 986-1004. |
[17] | ARSIGNY V, COMMOWICK O, PENNEC X, et al.A Log-Euclidean framework for statistics on diffeomorphisms[M]//Medical image computing and computer assisted intervention - MICCAI 2006. Berlin: Springer,2006: 924-931. |
[18] | ASHBURNER J. A fast diffeomorphic image registration algorithm [J]. NeuroImage, 2007, 38(1): 95-113. |
[19] | AVANTS B B, EPSTEIN C L, GROSSMAN M, et al. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J]. Medical Image Analysis, 2008, 12(1): 26-41. |
[20] | MILLETARI F, NAVAB N, AHMADI S A. V-Net:Fully convolutional neural networks for volumetric medical image segmentation [C]//2016 Fourth International Conference on 3D Vision (3DV). Stanford: IEEE, 2016: 565-571. |
[21] | SUDRE C H, LI W, VERCAUTEREN T, et al. Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations [M]// Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer, 2017: 240-248. |
[22] | PEREYRA G, TUCKER G, CHOROWSKI J, et al. Regularizing neural networks by penalizing confident output distributions [EB/OL]. (2017-01-23).https://arxiv.org/abs/1701.06548. |
[23] | ZHUANG X, SHEN J. Multi-scale patch and multimodality atlases for whole heart segmentation of MRI[J]. Medical Image Analysis, 2016, 31: 77-87. |
[24] | ZHUANG X, LI L, PAYER C, et al. Evaluation of algorithms for Multi-Modality Whole Heart Segmentation:An open-access grand challenge [J]. Medical Image Analysis, 2019, 58: 101537. |
[25] | KAVUR A E, GEZER N S, BARIS? M, et al. CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation [J]. Medical Image Analysis, 2021,69: 101950. |
[26] | SANDK¨UHLER R, JUD C, ANDERMATT S, et al. AirLab: Autograd image registration laboratory[EB/OL]. (2020-03-02). https://arxiv.org/abs/1806.09907. |
[27] | DING W, LI L, ZHUANG X, et al. Cross-modality multi-atlas segmentation using deep neural networks[M]//Medical image computing and computer assisted intervention - MICCAI 2020. Cham: Springer, 2020:233-242. |
[28] | KINGMA D, BA J. Adam: A method for stochastic optimization [C]//3rd International Conference on Learning Representations. San Diego: Ithaca, 2014: 1-15 |
[29] | WILCOXON F. Individual comparisons by ranking methods [J]. Biometrics Bulletin, 1945, 1(6): 80-83. |
[1] | YAO Leyul (姚乐宇),HE Fan1,3 (何凡), PENG Haixia2* (彭海霞), WANG Xiaofeng2 (王晓峰),ZHOU Lu2(周璐), HUANG Xiaolin1,3* (黄晓霖). Improving Colonoscopy Polyp Detection Rate Using Semi-Supervised Learning [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 441-. |
[2] | CHANG Qing∗ (常 青), YANG Wenyou (杨文友), CHEN Lanlan (陈兰岚). Deformable Registration Algorithm via Non-subsampled Contourlet Transform and Saliency Map [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 452-462. |
[3] | TU Enmei,YANG Jie. A Review of Semi-Supervised Learning Theories and Recent Advances [J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1280-1291. |
[4] | TANG Qi-feng (汤奇峰), LI De-wei* (李德伟), XI Yu-geng (席裕庚). Soft-Sensing Method with Online Correction Based on Semi-Supervised Learning [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(2): 171-176. |
[5] | WANG Ping,WANG Di,FENG Wei. Online Semi-Supervised Extreme Learning Machine Based on Manifold Regularization [J]. Journal of Shanghai Jiaotong University, 2015, 49(08): 1153-1158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||