[1] |
HERMANN M, PENTEK T, OTTO B. Design principles for industrie 4.0 scenarios [C]//49th Hawaii International Conference on System Sciences (HICSS). Koloa, HI, USA: IEEE, 2016: 3928-3937.
|
[2] |
STOCK T, SELIGER G. Opportunities of sustainable manufacturing in industry 4.0 [J]. Procedia CIRP,2016, 40: 536-541.
|
[3] |
THOBEN K D, WIESNER S A, WUEST T. “Industrie 4.0” and smart manufacturing: A review of research issues and application examples [J]. International Journal of Automation Technology, 2017, 11(1): 4-16.
|
[4] |
KAGERMANN H, WAHLSTER W, HELBIG J. Recommendations for implementing the strategic initiative INDUSTRIE 4.0 [R]. Frankfurt: acatech – National Academy of Science and Engineering, 2013.
|
[5] |
DIEZ-OLIVAN A, DEL SER J, GALAR D, et al. Data fusion and machine learning for industrial prognosis:Trends and perspectives towards Industry 4.0 [J]. Information Fusion, 2019, 50: 92-111.
|
[6] |
PARVIN S, HUSSAIN F K, HUSSAIN O K, et al. Multi-cyber framework for availability enhancement of cyber physical systems [J]. Computing, 2013,95(10/11): 927-948.
|
[7] |
MONOSTORI L. Cyber-physical production systems:roots, expectations and R&D challenges [J]. Procedia CIRP, 2014, 17: 9-13.
|
[8] |
L¨OFSTRAND M, BACKE B, KY¨OSTI P, et al. A model for predicting and monitoring industrial system availability [J]. International Journal of Product Development,2012, 16(2): 140-157.
|
[9] |
LEI Y G, LIN J, HE Z J, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing,2013, 35(1/2): 108-126.
|
[10] |
GUILL′EN A J, CRESPO A, G′OMEZ J F, et al. A framework for effective management of condition based maintenance programs in the context of industrial development of E-Maintenance strategies [J]. Computers in Industry, 2016, 82: 170-185.
|
[11] |
MONOSTORI L, K′AD′AR B, BAUERNHANSL T, et al. Cyber-physical systems in manufacturing [J]. CIRP Annals, 2016, 65(2): 621-641.
|
[12] |
TANTIK E, ANDERL R. Integrated data model and structure for the asset administration shell in Industrie 4.0 [J]. Procedia CIRP, 2017, 60: 86-91.
|
[13] |
WU N L, WANG X Y, GE T, et al. Parametric identification and structure searching for underwater vehicle model using symbolic regression [J]. Journal of Marine Science and Technology, 2017, 22(1): 51-60.
|
[14] |
JAVANMARD H, AL-WAHHAB KORAEIZADEH A. Optimizing the preventive maintenance scheduling by genetic algorithm based on cost and reliability in National Iranian Drilling Company [J]. Journal of Industrial Engineering International, 2016, 12(4): 509-516.
|
[15] |
LI L, ZHANG Y H, YANG C, et al. Hybrid genetic algorithm-based optimization of powertrain and control parameters of plug-in hybrid electric bus [J]. Journal of the Franklin Institute, 2015, 352(3): 776-801.
|
[16] |
COMPARE M, MARTINI F, ZIO E. Genetic algorithms for condition-based maintenance optimization under uncertainty [J]. European Journal of Operational Research, 2015, 244(2): 611-623.
|
[17] |
LIN T W, WANG C H. A hybrid genetic algorithm to minimize the periodic preventive maintenance cost in a series-parallel system [J]. Journal of Intelligent Manufacturing, 2012, 23(4): 1225-1236.
|
[18] |
BOUKTIF S, FIAZ A, OUNI A, et al. Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches [J]. Energies,2018, 11: 1636.
|
[19] |
MARS P. Learning algorithms: Theory and applications in signal processing, control and communications[M]. Boca Raton, FL, USA: CRC Press, 2017.
|
[20] |
DIKER A, AVCI D, AVCI E, et al. A new technique for ECG signal classification genetic algorithmWavelet Kernel extreme learning machine [J]. Optik, 2019, 180:46-55.
|