[1] |
MITCHELL D, COLLINS M P. Diagonal compressionfield theory: A rational model for structural concretein pure torsion [J]. ACI Journal, 1974, 71(8): 396-408.
|
[2] |
VECCHIO F J, COLLINS M P. The modifiedcompression-field theory for reinforced concrete elements subjected to shear [J]. ACI Journal, 1986, 83(2):219-231.
|
[3] |
VECCHIO F J. Disturbed stress field model for reinforcedconcrete: Formulation [J]. Journal of StructuralEngineering, 2000, 126(9): 1070-1077.
|
[4] |
VECCHIO F J. Disturbed stress field model for reinforcedconcrete: Implementation [J]. Journal of StructuralEngineering, 2001, 127(1): 12-20.
|
[5] |
VECCHIO F J, LAI D, SHIM W, et al. Disturbedstress field model for reinforced concrete: Validation[J]. Journal of Structural Engineering, 2001, 127(4):350-358.
|
[6] |
HSU T T C. Softened truss model theory for shearand torsion [J]. ACI Structural Journal, 1988, 85(6):624-635.
|
[7] |
HSU T T C. Toward a unified nomenclature forreinforced-concrete theory [J]. Journal of StructuralEngineering, 1996, 122(3): 275-283.
|
[8] |
HSU T T C, MO Y L. Unified theory of concrete structures[M]. Chichester, UK: John Wiley & Sons, Ltd.,2010.
|
[9] |
LEE J Y, KIM J Y. Simplified equation based oncompatibility-aided truss model for shear strength ofreinforced concrete beams [J]. ACI Structural Journal,2016, 113(6): 1301-1312.
|
[10] |
MEL′ENDEZ C, MIGUEL P F, PALLAR′ES L. A simplifiedapproach for the ultimate limit state analysisof three-dimensional reinforced concrete elements [J].Engineering Structures, 2016, 123: 330-340.
|
[11] |
BENINATO F, FOTI D, VACCA V. U.l.S. 3D domainof rectangular cross-sections in r.c. subject to shear andtorsion [J]. Engineering Structures, 2016, 127: 240-259.
|
[12] |
HUANG L, LU Y Q, SHI C X. Unified calculationmethod for symmetrically reinforced concrete sectionsubjected to combined loading [J]. ACI StructuralJournal, 2013, 110(1): 127-136.
|
[13] |
MAR′I A, BAIR′AN J, CLADERA A, et al. Shearflexuralstrength mechanical model for the design andassessment of reinforced concrete beams [J]. Structureand Infrastructure Engineering, 2015, 11(11): 1399-1419.
|
[14] |
CLADERA A, MAR′I A, RIBAS C, et al. Predictingthe shear-flexural strength of slender reinforced concreteT and I shaped beams [J]. Engineering Structures,2015, 101: 386-398.
|
[15] |
ROSSI P P, RECUPERO A. Ultimate strength of reinforcedconcrete circular members subjected to axialforce, bending moment, and shear force [J]. Journal ofStructural Engineering, 2013, 139(6): 915-928.
|
[16] |
ROSSI P P. Evaluation of the ultimate strength of R.C.rectangular columns subjected to axial force, bendingmoment and shear force [J]. Engineering Structures,2013, 57: 339-355.
|
[17] |
NIELSEN M P, HOANG L C. Limit analysis and concreteplasticity [M]. Boca Raton, FL, USA: CRC Press,2011.
|
[18] |
HUANG Z, LIU X L. Unified approach for analysisof box-section members under combined actions [J].Journal of Bridge Engineering, 2007, 12(4): 494-499.
|
[19] |
CHEN X, LIU X L. Limit analysis for reinforced concreterectangular members under bending, shear andtorsion [J]. Journal of Shanghai Jiao Tong University(Science), 2014, 19(2): 129-138.
|
[20] |
TASUJIME, SLATE FO, NILSONAH. Stress-strainresponse and fracture of concrete in biaxial loading [J].ACI Journal, 1978, 75(7): 306-312.
|
[21] |
L¨U Z T, ZHOU M H, CHEN Y W. An experimentalstudy of shear strength of reinforced concrete memberswith ring-section in bending [J]. Journal of NanjingInstitute of Technology, 1980(3): 26-31 (in Chinese).
|
[22] |
L¨U Z T, SHI P F, ZHOU Y Q. Experimental researchon shear strength of reinforced concrete beams withcircular and ring section [J]. Journal of Building Structures,1995, 16(3): 13-20 (in Chinese).
|