Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (3): 381-387.doi: 10.1007/s12204-018-1963-4
Previous Articles Next Articles
YU Xingxue (余兴学), ZHANG Yinghua (张映华), ZHANG Xiaomin (张晓敏), JIANG Yu* (蒋渝)
Online:
2019-06-01
Published:
2019-05-29
Contact:
JIANG Yu* (蒋渝)
E-mail: jyscuniversity@163.com
CLC Number:
YU Xingxue (余兴学), ZHANG Yinghua (张映华), ZHANG Xiaomin (张晓敏), JIANG Yu* (蒋渝). Energy Separation and Explicit Dynamic Analysis of Low Temperature Impact Toughness of Transmission Tower Material Q420B[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 381-387.
[1] | CHEN S, DONG D, HUANG X T, et al. Short-termprediction for transmission lines icing based on BPneural network [C]// 2012 Asia-Pacific Power and EnergyEngineering Conference. Shanghai, China: IEEE,2012: 1-5. |
[2] | MA T N, NIU D X, FU M. Icing forecasting for powertransmission lines based on a wavelet support vectormachine optimized by a quantum fireworks algorithm[J]. Applied Sciences, 2016, 6(2): 1-23. |
[3] | HU X G, CUI Z J, LI Q H, et al. Analysis of collapseof a 330 kilovolt transmission line tower [J]. IndustrialConstruction, 2016, 46(8): 50-55 (in Chinese). |
[4] | RAO N P, KNIGHT G M S, MOHAN S J, et al. Studieson failure of transmission line towers in testing [J].Engineering Structures, 2012, 35: 55-70. |
[5] | ALAZHARI M S. Analysis and testing the over headtransmission steel towers [J]. IOSR Journal of Mechanicaland Civil Engineering, 2014, 11(2): 17-21. |
[6] | LAM H F, YIN T. Dynamic reduction-based structuraldamage detection of transmission towers: Practicalissues and experimental verification [J]. EngineeringStructures, 2011, 33(5): 1459-1478. |
[7] | FARZANEHM, SAVADJIEV K. Statistical analysis offield data for precipitation icing accretion on overheadpower lines [J]. IEEE Transactions on Power Delivery,2005, 20(2): 1080-1087. |
[8] | ALBERMANI F, KITIPORNCHAI S, CHAN R W K.Failure analysis of transmission towers [J]. EngineeringFailure Analysis, 2009, 16(6):1922-1928. |
[9] | ROYLANCE D. Mechanics of materials [M]. NewYork: John Wiley & Sons, 1996. |
[10] | TOMOTA Y, XIA Y, INOUE K. Mechanism of lowtemperature brittle fracture in high nitrogen bearingaustenitic steels [J]. Acta Materialia, 1998, 46(5):1577-1587. |
[11] | PINEAU A. Modeling ductile to brittle fracture transitionin steels-micromechanical and physical challenges[J]. International Journal of Fracture, 2008, 150(1/2):129-156. |
[12] | LIU S Y, LIU D Y, LIU S C. Transgranular fracturein low temperature brittle fracture of high nitrogenaustenitic steel [J]. Journal of Materials Science, 2007,42(17): 7514-7519. |
[13] | T′OTH L, ROSSMANITH H P, SIEWERT T A. Historicalbackground and development of the Charpy test[J]. European Structural Integrity Society, 2002, 30: 3-19. |
[14] | RADON J C. Application of instrumented impact testin polymer testing [J]. Journal of Applied Polymer Science,1978, 22(6): 1569-1581. |
[15] | ROSSOLL A, BERDIN C, PRIOUL C. Determinationof the fracture toughness of a low alloy steel bythe instrumented Charpy impact test [J]. InternationalJournal of Fracture, 2002, 115(3): 205-226. |
[16] | ISO. Metallic materials-tensile testing at low temperature:ISO 15579-2000 [S]. Geneva, Switzerland: ISO,2000. |
[17] | ISO. Metallic materials-Charpy pendulum impact test:ISO 148-1-2009 [S]. Geneva, Switzerland: ISO, 2009. |
[18] | HALLQUIST J O. LS-DYNA3D Theoretical Manual[M]. Livermore, CA: LSTC, 1993. |
[19] | PADHI D, LEWANDOWSKI J J. Effects of test temperatureand grain size on the Charpy impact toughnessand dynamic toughness (KID) of polycrystallineniobium [J]. Metallurgical and Materials TransactionsA, 2003, 34(4): 967-978. |
[20] | RZEPA S, BUCKI T, KONOP′IK P, et al. Influenceof specimen dimensions on ductile-to-brittle transitiontemperature in Charpy impact test [C]// Proceedingsof the 4th International Conference Recent Trends inStructural Materials. Pilsen, Czech Republic: IOP,2017: 012063. |
[21] | ZHANG G M, ZHOU Z J, WANG M, et al.Tensile and Charpy impact properties of an ODSferritic/martensiticsteel 9Cr-1.8W-0.5Ti-0.35Y2O3 [J].Fusion Engineering and Design, 2014, 89(4): 280-283. |
[22] | PILLOT S, PACQUEAU P. An attempt to define aCharpy V-notched mastercurve to fit transition of ferriticsteels [J]. Engineering Fracture Mechanics, 2015,135: 259-273. |
[23] | WAN Q M, WANG R S, SHU G G, et al. Analysismethod of Charpy V-notch impact data before andafter electron beam welding reconstitution [J]. NuclearEngineering and Design, 2011, 241(2): 459-463. |
[1] | NA Pengyue, WU Zhen, LIU Qi, HUO Junzhou. Life Analysis of Wear Fatigue Competition Failure Mechanism of Main Bearing of Boring Machine [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 675-683. |
[2] | GONG Chao, HOU Yuanhang, ZHANG Yuqi, LIU Dianyong, WAN Yuejin. Characterization of Surface Motion of Submerged Unmanned Ship in Freak Waves Environment [J]. Journal of Shanghai Jiao Tong University, 2025, 59(4): 447-457. |
[3] | TIAN Yi, LAI Jingye, WANG Bingqian, YAN Tianxu, HONG Zehua, TANG Chengshi, YANG Yang, CHAI Juanfang. Research on the Development of Intelligent Simulation Technology for Precision-Guided Weapons [J]. Air & Space Defense, 2025, 8(2): 7-17. |
[4] | MA Xiaolong, XU Xinpeng, REN Shulei, LI Chen, CUI Shan. Architecture Design of Guidance Head Signal Processing Module Based on GP-GPU Technology Application [J]. Air & Space Defense, 2025, 8(2): 84-92. |
[5] | ZHANG Yayun, WANG Lida, NIU Bo, LONG Donghui. Numerical Simulation of Ablation Heat Transfer of Resin-Based Thermal Protection Materials and Analysis of the Influence of Some Reaction Parameters [J]. Air & Space Defense, 2025, 8(2): 93-102. |
[6] | Cai Zhenhua, Li Canbing, Wu Qiuwei, Yang Tongguang, Li Zhenkai. Genetic Clustering-Based Equivalent Model of Wind Farm with Doubly Fed Induction Generator [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 300-308. |
[7] | LI Longyue, WANG Wenhao, PI Li, JIA Zhonghui, ZHAO Huizhen. Overview of Simulation and Deduction Methods for Air Defense and Anti-Missile Warfare [J]. Air & Space Defense, 2025, 8(1): 48-53. |
[8] | LI Yi, OU Shuyan, LIANG Weidong, DONG Jiabao, ZHUANG Zhidong. Numerical Simulation of Rocket Fairing Spin Separation in Low-Altitude High-Dynamic-Pressure Environment [J]. Air & Space Defense, 2025, 8(1): 102-108. |
[9] | CAO Juhang, ZHANG Jie, ZHANG Jie, DENG Chiyu, GAO Lei, LI Jian, CHEN Juan, LONG Xiaopin, YU Yuanfang, JIANG Bingbing. Simulation Test of Multi-Diameter Pig Based on a Subsea Pipeline in a Gas Field in the South China Sea [J]. Ocean Engineering Equipment and Technology, 2025, 12(1): 28-36. |
[10] | XU Haodong, YU Tongzhen, FAN Wei, LI Mingguang, LIU Nianwu. Influence of Slurry Diffusion on Drag Reduction During Pipe Jacking Cnstruction [J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 1067-1074. |
[11] | FAN Hong, XING Mengqing, WANG Lankun, TIAN Shuxin. Multi-Time Scale Probabilistic Production Simulation of Wind-Solar Hydrogen Integrated Energy System Considering Hydrogen Storage [J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 881-892. |
[12] | ZHOU Xuemei1, 2∗ (周雪梅), WEI Guohui1 (韦国辉), GUAN Zhen1 (关震), XI Jiaojiao1 (席姣姣). Simulation of Pedestrian Evacuation Behavior Considering Dynamic Information Guidance in a Hub [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1091-1102. |
[13] | DENG Hefang (邓贺方), XIA Kailong (夏凯龙), TENG Jinfang (滕金芳), QIANG Xiaoqing (羌晓青), ZHU Mingmin∗ (朱铭敏), LU Shaopeng (卢少鹏). Performance Effect of Trench Casing on a Transonic Compressor at Different Rotating Speeds [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1151-1160. |
[14] | WANG Weiping, CHEN Lu, WANG Junmin, LI Xiaobo, ZHU Zhi. Progress Review and Technical Conception on the Digital Mission Engineering Research for Kill-Chain System-of-Systems [J]. Air & Space Defense, 2024, 7(5): 8-17. |
[15] | JIANG Ruiqi, XU Jinlong, NI Hanqi, SHI Xingyu, ZHANG Wei, HE Zishu. U.S. Army NIFC-CA Kill Chain System Simulation Design and Evaluation [J]. Air & Space Defense, 2024, 7(5): 82-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||