Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (3): 381-387.doi: 10.1007/s12204-018-1963-4
Previous Articles Next Articles
YU Xingxue (余兴学), ZHANG Yinghua (张映华), ZHANG Xiaomin (张晓敏), JIANG Yu* (蒋渝)
Online:
2019-06-01
Published:
2019-05-29
Contact:
JIANG Yu* (蒋渝)
E-mail: jyscuniversity@163.com
CLC Number:
YU Xingxue (余兴学), ZHANG Yinghua (张映华), ZHANG Xiaomin (张晓敏), JIANG Yu* (蒋渝). Energy Separation and Explicit Dynamic Analysis of Low Temperature Impact Toughness of Transmission Tower Material Q420B[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 381-387.
[1] | CHEN S, DONG D, HUANG X T, et al. Short-termprediction for transmission lines icing based on BPneural network [C]// 2012 Asia-Pacific Power and EnergyEngineering Conference. Shanghai, China: IEEE,2012: 1-5. |
[2] | MA T N, NIU D X, FU M. Icing forecasting for powertransmission lines based on a wavelet support vectormachine optimized by a quantum fireworks algorithm[J]. Applied Sciences, 2016, 6(2): 1-23. |
[3] | HU X G, CUI Z J, LI Q H, et al. Analysis of collapseof a 330 kilovolt transmission line tower [J]. IndustrialConstruction, 2016, 46(8): 50-55 (in Chinese). |
[4] | RAO N P, KNIGHT G M S, MOHAN S J, et al. Studieson failure of transmission line towers in testing [J].Engineering Structures, 2012, 35: 55-70. |
[5] | ALAZHARI M S. Analysis and testing the over headtransmission steel towers [J]. IOSR Journal of Mechanicaland Civil Engineering, 2014, 11(2): 17-21. |
[6] | LAM H F, YIN T. Dynamic reduction-based structuraldamage detection of transmission towers: Practicalissues and experimental verification [J]. EngineeringStructures, 2011, 33(5): 1459-1478. |
[7] | FARZANEHM, SAVADJIEV K. Statistical analysis offield data for precipitation icing accretion on overheadpower lines [J]. IEEE Transactions on Power Delivery,2005, 20(2): 1080-1087. |
[8] | ALBERMANI F, KITIPORNCHAI S, CHAN R W K.Failure analysis of transmission towers [J]. EngineeringFailure Analysis, 2009, 16(6):1922-1928. |
[9] | ROYLANCE D. Mechanics of materials [M]. NewYork: John Wiley & Sons, 1996. |
[10] | TOMOTA Y, XIA Y, INOUE K. Mechanism of lowtemperature brittle fracture in high nitrogen bearingaustenitic steels [J]. Acta Materialia, 1998, 46(5):1577-1587. |
[11] | PINEAU A. Modeling ductile to brittle fracture transitionin steels-micromechanical and physical challenges[J]. International Journal of Fracture, 2008, 150(1/2):129-156. |
[12] | LIU S Y, LIU D Y, LIU S C. Transgranular fracturein low temperature brittle fracture of high nitrogenaustenitic steel [J]. Journal of Materials Science, 2007,42(17): 7514-7519. |
[13] | T′OTH L, ROSSMANITH H P, SIEWERT T A. Historicalbackground and development of the Charpy test[J]. European Structural Integrity Society, 2002, 30: 3-19. |
[14] | RADON J C. Application of instrumented impact testin polymer testing [J]. Journal of Applied Polymer Science,1978, 22(6): 1569-1581. |
[15] | ROSSOLL A, BERDIN C, PRIOUL C. Determinationof the fracture toughness of a low alloy steel bythe instrumented Charpy impact test [J]. InternationalJournal of Fracture, 2002, 115(3): 205-226. |
[16] | ISO. Metallic materials-tensile testing at low temperature:ISO 15579-2000 [S]. Geneva, Switzerland: ISO,2000. |
[17] | ISO. Metallic materials-Charpy pendulum impact test:ISO 148-1-2009 [S]. Geneva, Switzerland: ISO, 2009. |
[18] | HALLQUIST J O. LS-DYNA3D Theoretical Manual[M]. Livermore, CA: LSTC, 1993. |
[19] | PADHI D, LEWANDOWSKI J J. Effects of test temperatureand grain size on the Charpy impact toughnessand dynamic toughness (KID) of polycrystallineniobium [J]. Metallurgical and Materials TransactionsA, 2003, 34(4): 967-978. |
[20] | RZEPA S, BUCKI T, KONOP′IK P, et al. Influenceof specimen dimensions on ductile-to-brittle transitiontemperature in Charpy impact test [C]// Proceedingsof the 4th International Conference Recent Trends inStructural Materials. Pilsen, Czech Republic: IOP,2017: 012063. |
[21] | ZHANG G M, ZHOU Z J, WANG M, et al.Tensile and Charpy impact properties of an ODSferritic/martensiticsteel 9Cr-1.8W-0.5Ti-0.35Y2O3 [J].Fusion Engineering and Design, 2014, 89(4): 280-283. |
[22] | PILLOT S, PACQUEAU P. An attempt to define aCharpy V-notched mastercurve to fit transition of ferriticsteels [J]. Engineering Fracture Mechanics, 2015,135: 259-273. |
[23] | WAN Q M, WANG R S, SHU G G, et al. Analysismethod of Charpy V-notch impact data before andafter electron beam welding reconstitution [J]. NuclearEngineering and Design, 2011, 241(2): 459-463. |
[1] | CAO Taichun, WU Gang, KONG Xiangyi, YU Dongwei, WU Lin, ZHANG Dayong. Influence of Convection Heat Transfer on Circular Tube Structure of Polar Marine Engineering Equipment [J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 17-23. |
[2] | DING Enbao, CHANG Shengming, SUN Cong, ZHAO Leiming, WU Hao. Hydrodynamic Characteristics of a Surface Piercing Propeller Entering Water with Different Radiuses [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1188-1198. |
[3] | WU Huaina, FENG Donglin, LIU Yuan, LAN Ganzhou, CHEN Renpeng. Anti-Uplift Portal Frame in Control of Underlying Tunnel Deformation Induced by Foundation Pit Excavation [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1227-1237. |
[4] | WANG Xiaoliang, YAO Xiaosong, GAO Shuang, LIU Guohua. Aerodynamic Drag Characteristics of Ultra-Low Orbit Satellites [J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1089-1100. |
[5] | LIU Jinhao, YAN Yuanzhong, ZHANG Qi, BIAN Rong, HE Lei, YE Guanlin. Centrifugal Test and Numerical Analysis of Impact of Surface Surcharge on Existing Tunnels [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 886-896. |
[6] | CHEN Yonglin (陈永霖), YANG Weidong (杨伟东), XIE Weicheng (谢炜程), WANG Xiaoliang (王晓亮), FU Gongyi∗ (付功义). Meso-Scale Tearing Mechanism Analysis of Flexible Fabric Composite for Stratospheric Airship via Experiment and Numerical Simulation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 873-884. |
[7] | HUO Qianjun (霍前俊), LIU Sheng∗ (刘胜), XU Qingyu (徐青瑜), ZHANG Yuanfei (张远飞), ZHANG Yaoyao (张耀耀), LI Xu (李旭). Bending Prediction Method of Multi-Cavity Soft Actuator [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 631-637. |
[8] | LI Jia, LI Huacong, WANG Yue. Transient Characteristics of a High-Speed Aero-Fuel Centrifugal Pump in Variable Gas-Liquid Ratio Conditions [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 622-634. |
[9] | SUN Jian, PENG Bin, ZHU Bingguo. Numerical Simulation and Experimental Study of Oil-Free Double-Warp Air Scroll Compressor [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 611-621. |
[10] | ZHOU Xirui, WANG Ping, ZENG Haixiang, ZHANG Yang, PRASHANT Shrotriya, ANTONIO Ferrante, QI Haotian. Large Eddy Simulation on Blow-Off Limit of Methane and Hydrogen-Mixed Gas [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 635-647. |
[11] | XU Huilia (许慧丽), ZOU Zaojiana,b∗ (邹早建). Numerical Simulation of the Flow in a Waterjet Intake Under Different Motion Conditions [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 356-364. |
[12] | WANG Ning, FU Yunpeng, LI Ting, LI Tie, YI Ping. Optimization of Control Scheme for Large Flow Seawater Cooling System Based on FloMaster-Simulink Co-Simulation [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 379-385. |
[13] | ZHANG Shaoguang, XIAO Maochao, ZHANG Yufei, CHEN Haixin. Study on Perturbation Introduction Method of Asymmetric Vortex Simulation of Slender Body at High Angle of Attack [J]. Air & Space Defense, 2022, 5(3): 10-16. |
[14] | QIN Han, WU Bin, SONG Yuhui, LIU Jin, CHEN Lan. Numerical Analysis of Support Interference for a Slender Configuration at Super Large Angles of Attack in High Speed Wind Tunnel [J]. Air & Space Defense, 2022, 5(3): 44-51. |
[15] | XUE Fei, WANG Yuchao, WU Bin. Study on Backward Separation Characteristics of High-Speed Air Vehicle [J]. Air & Space Defense, 2022, 5(3): 80-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||