[1] HANNE T. Global multiobjective optimization withevolutionary algorithms: Selection mechanisms andmutation control [C]//Evolutionary Multi-CriterionOptimization. Ouro Preto, Brazil: EMO, 2001: 197-212.
[2] LAUMANNS M, THIELE L, ZITZLER E. Archivingwith guaranteed convergence and diversity in multiobjectiveoptimization [C]//Genetic and EvolutionaryComputation Conference. New York, USA: MorganKaufmann Publishers, 2002: 439-447.
[3] LAUMANNS M, THIELE L, ZITZLER E. Runningtime analysis of multiobjective evolutionary algorithmson pseudo-Boolean functions [J]. IEEE Transaction onEvolutionary Computation, 2004, 8(2): 170-182.
[4] LAUMANNS M, THIELE L, ZITZLER E. Runningtime analysis of evolutionary algorithms on a simplifiedmultiobjective knapsack problem [J]. Natural Computing,2004, 3(1): 37-51.
[5] SCHARNOW J, TINNEFELD K, WEGENER I.Fitness landscapes based on sorting and shortestpaths problems [C]//International Conference on ParallelProblem Solving from Nature. Berlin, Germany:Springer-Verlag, 2002: 54-63.
[6] QIAN C, YU Y, ZHOU Z H. An analysis on recombinationin multi-objective evolutionary optimization[J]. Artificial Intelligence, 2013, 204: 99-119.
[7] PENG X, XIA X Y, LIAO W Z, et al. Running timeanalysis of the Pareto archived evolution strategy onpseudo-Boolean functions [J]. Multimedia Tools andApplications, 2018, 77(9): 11203-11217.
[8] XIA X Y, PENG X, DENG L Y, et al. Performanceanalysis of evolutionary optimization for the bank accountlocation problem [J]. IEEE Access, 2018, 6:17756-17767.
[9] KELSEY J, TIMMIS J. Immune inspired somaticcontiguous hypermutations for function optimisation[C]//Genetic and Evolutionary Computation Conference.Chicago, IL, USA: Springer-Verlag, 2003: 207-218.
[10] XIA X Y, ZHOU Y R. On the effectiveness of immuneinspired mutation operators in some discrete optimizationproblems [J]. Information Sciences, 2018, 426:87-100.
[11] JANSEN T, ZARGES C. Analysis of randomisedsearch heuristics for dynamic optimization [J]. EvolutionaryComputation, 2015, 23(4): 513-541.
[12] JANSEN T, ZARGES C. Computing longestcommon subsequences with the B-cell algorithm[C]//International Conference on Artificial ImmuneSystems. Taormina, Italy: Springer-Verlag, 2012:111-124.
[13] JANSEN T, ZARGES C. Re-evaluating immuneinspiredhypermutations using the fixed budget perspective[J]. IEEE Transactions on Evolutionary Computation,2014, 18(5): 674-688.
[14] XIA X Y, ZHOU Y R. Performance analysis of immuneinspired B-cell algorithm for the SAT problem[J]. Microelectronics and Computer, 2016, 33(7): 5-10(in Chinese).
[15] NEUMANN F. Expected runtimes of a simple evolutionaryalgorithm for the multi-objective minimumspanning tree problem [J]. European Journal of OperationalResearch, 2007, 181(3): 1620-1629.
[16] NEUMANN F, WEGENER I. Minimum spanningtrees made easier via multi-objective optimization [J].Natural Computing, 2006, 5 (3): 305-319.
[17] LAI X S, ZHOU Y R, HE J, et al. Performance analysisof evolutionary algorithms for the minimum labelspanning tree problem [J]. IEEE Transactions on EvolutionaryComputation, 2014, 18(6): 860-872.
[18] FRIEDRICH T, HEBBINGHAUS N, NEUMANN F,et al. Approximating covering problems by randomizedsearch heuristics using multi-objective models[C]//Genetic and Evolutionary Computation Conference.London, UK: ACM, 2007: 797-804.
[19] JANSEN T, ZARGES, C. Analyzing different variantsof immune inspired somatic contiguous hypermutations[J]. Theoretical Computer Science, 2011, 412(6):517-533.
[20] MITZENMACHER M, UPFAL E. Propability andcomputing: Randomized algorithms and probabilisticanalysis [M]. Cambridge, UK: Cambridge UniversityPress, 2005.
[21] JANSEN T, WEGENER I. Evolutionary algorithms:How to cope with plateaus of constant fitness and whento reject strings of the same fitness [J]. IEEE Transactionson Evolutionary Computation, 2001, 5(6): 589-599.
[22] DROSTE S, JANSEN T, WEGENER I. A rigorouscomplexity analysis of the (1+1) evolutionary algorithmfor separable functions with Boolean inputs [J].Evolutionary Computation, 1998, 6(2): 185-196.
|