[1] |
ELSAYED E A, ZHANG H. Design of PH-based acceleratedlife testing plans under multiple-stress-type [J].Reliability Engineering & System Safety, 2007, 92(3):286-292.
|
[2] |
PAN Z, BALAKRISHNAN N. Reliability modelingof degradation of products with multiple performancecharacteristics based on gamma processes [J]. ReliabilityEngineering & System Safety, 2011, 96(8): 949-957.
|
[3] |
WANG X, XU D. An inverse Gaussian process modelfor degradation data [J]. Technometrics, 2010, 52(2):188-197.
|
[4] |
PAN Z, BALAKRISHNAN N, SUN Q, et al. Bivariatedegradation analysis of products based on Wienerprocesses and copulas [J]. Journal of Statistical Computationand Simulation, 2013, 83(7): 1316-1329.
|
[5] |
MEEKER W Q, ESCOBAR L A. Statistical methodsfor reliability data [M]. New York, USA: John Wiley& Sons, 1998.
|
[6] |
YE Z S, CHEN N. The inverse Gaussian process asa degradation model [J]. Technometrics, 2014, 56(3):302-311.
|
[7] |
PENG W W, LI Y F, YANG Y J, et al. InverseGaussian process models for degradation analysis: ABayesian perspective [J]. Reliability Engineering &System Safety, 2014, 130: 175-189.
|
[8] |
PENG C Y. Inverse Gaussian processes with randomeffects and explanatory variable for degradation data[J]. Technometrics, 2015, 57(1): 100-111.
|
[9] |
ZHOU J L, PAN Z Q, SUN Q. Bivariate degradationmodeling based on gamma process [C]//Proceedingsof the World Congress on Engineering. London, UK:WCE, 2010: 1-6.
|
[10] |
LIU Z Y, MA X B, YANG J, et al. Reliability modelingfor systems with multiple degradation processes usinginverse Gaussian process and copulas [J]. MathematicalProblems in Engineering, 2014: 1-10.
|
[11] |
PAN Z Q, BALAKRISHNAN N, SUN Q. Bivariateconstant-stress accelerated degradation model and inference[J]. Communications in Statistics-Simulationand Computation, 2011, 40(2): 247-257.
|
[12] |
PAN Z Q, SUN Q. Optimal design for step-stress accelerateddegradation test with multiple performancecharacteristics based on gamma processes [J]. Communicationin Statistics-Simulation and Computation,2014, 43(2): 298-314.
|
[13] |
NELSON R B. An introduction to copulas [M]. 2nded. New York, USA: Spring, 2006.
|
[14] |
PENG W W, LI Y F, YANG Y J, et al. Bivariateanalysis of incomplete degradation observations basedon inverse Gaussian processes and copulas [J]. IEEETransactions on Reliability, 2016, 65(2): 624-639.
|