[1] |
BARAB′ASI A L, ALBERT R, JEONG H. Mean fieldtheory for scale free random graph [J]. Physica A: StatisticalMechanics and Its Applications, 1999, 272(1):173-187.
|
[2] |
WATTS D J, STROGAZ S H. Collective dynamics ofsmall-world network [J]. Nature, 1998, 393(6684): 440-442.
|
[3] |
BAO Z J, JIANG Q Y, YAN W J, et al. Stability ofthe spreading in small-world network with predictivecontroller [J]. Physics Letters A, 2010, 374(13): 1560-1564.
|
[4] |
MENG M, LI S, MA H R. The transition of epidemicspreading in small world [J]. Journal of Shanghai JiaoTong University, 2006, 40(5): 869-972 (in Chinese).
|
[5] |
MOUKARZEL C F. Spreading and shortest paths insystems with sparse long-range connections [J]. PhysicalReview E, 1999, 60(6): 6263-6266.
|
[6] |
YANG X S. Fractals in small-world network with timedelay[J]. Chaos, Solitons and Fractals, 2002, 13(2):215-219.
|
[7] |
LI X, CHEN G R, LI C G. Stability and bifurcationof disease spreading in complex networks [J]. InternationalJournal of Systems Science, 2004, 35(9): 527-536.
|
[8] |
LI X, WANG X F. Controlling the spreading in smallworldevolving networks: Stability, oscillation, andtopology [J]. IEEE Transactions on Automatic Control,2006, 51(3): 534-540.
|
[9] |
XIAO M, HO D W C, CAO J D. Time-delayed feedbackcontrol of dynamical small-world network at Hopfbifurcation [J]. Nonlinear Dynamics, 2009, 58(1/2):319-344.
|
[10] |
XU C, ZHOU Y L, WANG Y. Control of Hopf bifurcationin a fluid-flow model in wireless networks[J]. Journal of Shanghai Jiao Tong University, 2014,48(10): 1479-1484 (in Chinese).
|
[11] |
CHENG Z S, CAO J D. Hybrid control of Hopf bifurcationin complex networks with delays [J]. Neurocomputing,2014, 131: 164-170.
|
[12] |
DING D W, ZHU J, LUO X S, et al. Delay inducedHopf bifurcation in a dual model of Internet congestioncontrol algorithm [J]. Nonlinear Analysis: Real WorldApplications, 2009, 10(5): 2873-2883.
|