[1] |
CANDES E J, ROMBERG J, TAO T. Robust uncertaintyprinciples: exact signal reconstruction fromhighly incomplete frequency information [J]. IEEETransactions on Information Theory, 2006, 52(2):489-509.
|
[2] |
DONOHO D L. Compressed sensing [J]. IEEE Transactionson Information Theory, 2006, 52(4): 1289-1306.
|
[3] |
CANDES E J, WAKIN M B. An introduction to compressivesampling [J]. IEEE Signal Processing Magazine,2008, 25(2): 21-30.
|
[4] |
ENGLH W, HANKE M, NEUBAUER A. Regularizationof inverse problems [M]. London: Kluwer AcademicPublishers, 1996.
|
[5] |
CANDESE J, ROMBERG J K. Signal recovery fromrandom projections [C]//Proceedings of SPIE-IS & TElectronic Imaging. Bellingham, USA: SPIE, 2005: 76-86.
|
[6] |
MA S, YIN W, ZHANG Y, et al. An efficient algorithmfor compressed MR imaging using total variation andwavelets [C]//IEEE Conference on Computer Visionand Pattern Recognition. Anchorage AK, USA: IEEE,2008: 1-8.
|
[7] |
RUDIN L I, OSHER S, FATEMI E. Nonlinear totalvariation based noise removal algorithms [J]. PhysicaD: Nonlinear Phenomena, 1992, 60(1): 259-268.
|
[8] |
BAYRAM I, KAMASAK M E. Directional total variation[J]. IEEE Signal Processing Letters, 2012, 19(12):781-784.
|
[9] |
ZHANG J, LAI R, JAYKUO C C. Adaptive directionaltotal-variation model for latent fingerprint segmentation[J]. IEEE Transactions on Information Forensicsand Security, 2013, 8(8): 1261-1273.
|
[10] |
WEICKERT J. Coherence-enhancing diffusion filtering[J]. International Journal of Computer Vision,1999, 31(2/3): 111-127.
|
[11] |
GRASMAIR M, LENZEN F. Anisotropic total variationfiltering [J]. Applied Mathematics & Optimization,2010, 62: 323-339.
|
[12] |
STEIDL G, TEUBER T. Anisotropic smoothing usingdouble orientations [C]//Scale Space and VariationalMethods in Computer Vision. Berlin Heidelberg:Springer, 2009: 477-489.
|
[13] |
LI C. An efficient algorithm for total variation regularizationwith applications to the single pixel cameraand compressive sensing [D]. Houston: Rice University,2009.
|
[14] |
YANG J, ZHANG Y, YIN W. A fast alternating directionmethod for TVL1-L2 signal reconstruction frompartial fourier Data [J]. IEEE Journal of Selected Topicsin Signal Processing, 2010, 4(2): 288-297.
|
[15] |
SHU X, AHUJA N. Hybrid compressive sampling viaa new total variation TVL1 [C]//Computer Vision–ECCV 2010. Berlin Heidelberg: Springer, 2010: 393-404.
|
[16] |
HU Y, JACOB M. Higher degree total variation(HDTV) regularization for image recovery [J]. IEEETransactions on Image Processing, 2012, 21(5): 2559-2571.
|