[1] |
Naess A, Gaidai O. Monte Carlo methods for estimating the extreme response of dynamical systems [J].Journal of Engineering Mechanics, 2008, 134(8): 628-636.
|
[2] |
Jiang Shui-hua, Li Dian-qing, Zhou Chuang-bing.Optimal probabilistic collocation points for stochastic response surface method [J]. Chinese Journal of Computational Mechanics, 2012, 29(3): 345-351 (in Chinese).
|
[3] |
Pirrotta A, Santoro R. Probabilistic response of nonlinear systems under combined normal and Poisson white noise via path integral method [J]. Probabilistic Engineering Mechanics, 2011, 26: 26-32.
|
[4] |
Beck J, Tempone R, Nobile F, et al. On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods [J]. Mathematical Models and Methods in Applied Sciences, 2012, 22(9):1-33.
|
[5] |
Babuˇska I, Nobile F, Tempone R. A stochastic collocation method for elliptic partial differential equations with random input data [J]. SIAM Review, 2012,55(2): 317-355.
|
[6] |
Witteveen J A S, Iaccarino G. Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability spaces [J]. SIAM Journal on Scientific Computing, 2012, 34(2): 814-838.
|
[7] |
Xiu D B, Hesthaven J S. High-order collocation methods for differential equations with random inputs[J]. SIAM Journal on Scientific Computing, 2005,27(3): 1118-1139.
|
[8] |
Xiong F F, Greene S, Chen W, et al. A new sparse grid based method for uncertainty propagation [J].Structural and Multidisciplinary Optimization, 2010,41: 335-349.
|
[9] |
Petras K. Smolyak cubature of given polynomial degree with few nodes for increasing dimension [J]. Numerical Mathematics, 2003, 93: 729-753.
|
[10] |
Zhao Y G, Tetsuro O. New point estimates for probability moments [J]. Journal of Engineering Mechanics,2000, 126(4): 433-436.
|
[11] |
Phoon K K, Huang S P, Quek S T. Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin Scheme [J]. Probabilistic Engineering Mechanics, 2002, 17(3): 293-303.
|