[1] |
Qiao De-hua, Zhang Kai-he, Fan Yao-zu. The optimizing of many traffic flow forecasting models [J].Communications Standardization, 2007, 164(4): 207-210 (in Chinese).
|
[2] |
Smith B L, Demetsky M J. Traffic flow forecasting:Comparison of modeling approaches [J]. Journal of Transportation Engineering, 1997, 123(4): 261-266.
|
[3] |
Okutani I, Stephanedes Y J. Dynamic prediction of traffic volume through Kalman filtering theory [J].Transportation Research, 1984, 18(1): 1-11.
|
[4] |
Smith B L, Williams B M, Oswald R K. Comparison of parametric and nonparametric models for traffic flow forecasting [J]. Transportation Research: Emerging Technologies, 2002, 10(4): 303-321.
|
[5] |
Chrobok R, Wahle J, Schreckenberg M. Traffic forecast using simulations of large scale networks[C]//2001 IEEE Intelligent Transportation Systems Conference Proceedings. Oakland, USA: IEEE, 2001:434-439.
|
[6] |
Vanajakshi L, Rilett L R. A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed[C]//2004 IEEE Symposium on Intelligent Vehicles.Parma, Italy: IEEE, 2004: 194-199.
|
[7] |
Kennedy J F, Eberhart R C. Swarm intelligence[M]. San Francisco, USA:Morgan Kaufmann, 2001.
|
[8] |
Tang Q F, Zhao L, Qi R B, et al. Tuning the structure and parameters of a neural network by using cooperative quantum particle swarm algorithm [J]. Applied Mechanics and Materials, 2011, 48(2011): 1328-1332.
|
[9] |
Leung F H F, Lam H K, Ling S H, et al. Tuning of the structure and parameters of neural network using an improved genetic algorithm [J]. IEEE Transactions on Neural Networks, 2003, 14(1): 79-88.
|
[10] |
Tsai J T, Chou J H, Liu T K. Tuning the structure and parameters of neural network by using hybrid Taguchi-genetic algorithm [J]. IEEE Transactions on Neural Network, 2006, 17(1): 69-80.
|
[11] |
Zhao L, Qian F. Tuning the structure and parameters of a neural network using cooperative binary-real particle swarm optimization [J]. Expert Systems with Applications, 2011, 38(5): 4972-4977.
|
[12] |
Jia R, Huang G. Hydroelectric generating unit vibration fault diagnosis via BP neural network based on particle swarm optimization [C]//International Conference on Sustainable Power Generation and Supply.Nanjing, China: IEEE, 2009: 1-4.
|
[13] |
Chen Q, Guo W, Li C H. An improved PSO algorithm to optimize BP neural network [C]//Fifth International Conference on Natural Computation.Madeira, Portugal: IEEE, 2009: 357-360.
|
[14] |
Luo D, Chu Z, Luo L Z, et al. Applications study of particle swarm optimization neural network in CFRD dam deformation monitoring [C]//International Conference on Environmental Engineering and Technology.Phuket, Thailand: IEEE, 2012: 6-12.
|
[15] |
Tang Q F, Li D W, Xi Y G, et al. Soft-sensing design based on semi-closed-loop framework [J]. Chinese Journal of Chemical Engineering, 2012, 20(6): 1213-1218.
|