Journal of shanghai Jiaotong University (Science) ›› 2013, Vol. 18 ›› Issue (3): 348-359.doi: 10.1007/s12204-013-1405-2
Previous Articles Next Articles
LIU Zhen-tao1* (刘镇弢), LI Tao2 (李 涛), HAN Jun-gang2 (韩俊刚)
Online:
2013-06-28
Published:
2013-08-12
Contact:
LIU Zhen-tao (刘镇弢)
E-mail: liuzhentao@xupt.edu.cn
CLC Number:
LIU Zhen-tao1* (刘镇弢), LI Tao2 (李 涛), HAN Jun-gang2 (韩俊刚). A Novel Reconfigurable Data-Flow Architecture for Real Time Video Processing[J]. Journal of shanghai Jiaotong University (Science), 2013, 18(3): 348-359.
[1] Rowen C. Engineering the complex SOC: Fast, flexible design with configurable processors [M]. Beijing: China Machine Press, 2005: 11-20.[2] Compton K, Hauck S. Reconfigurable computing: A survey of systems and software [J]. ACM Computing Surveys, 2002, 34(2): 171-210.[3] Oruklu E, Saniie J. Dynamically reconfigurable architecture design for ultrasonic imaging [J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(8): 2856-2866.[4] D′?az J, Ros E, Carrillo R, et al. Real-time system for high-image resolution disparity estimation [J]. IEEE Transactions on Image Processing, 2007, 16(1): 280-285.[5] Batlle J, Marti J, Ridao P, et al. A new FPGA/DSP-based parallel architecture for real-time image processing [J]. Real-Time Imaging, 2002, 8(5): 345-356.[6] Chen J C, Chien S Y. CRISP: Coarse-grained reconfigurable image stream processor for digital still cameras and camcorders [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(9): 1223-1236.[7] Farrugia N, Mamalet F, Roux S, et al. Fast and robust face detection on a parallel optimized architecture implemented on FPGA [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(4): 597-602.[8] Chattopadhyay A, Chen X, Ishebabi H, et al. High-level modelling and exploration of coarse-grained re-configurable architectures [C]//Proceedings of IEEE 2008 Design, Automation and Test in Europe. Munich, Germany: IEEE, 2008: 1334-1339.[9] Dennis J B, Misunas D P. A preliminary architecture for a basic data-flow processor [J]. ACM SIGARCH Computer Architecture News, 1974, 3(4): 126-132.[10] Hicks J, Chiou D, Ahg B S, et al. Performance studies of ID on the Monsoon dataflow system [J]. Journal of Parallel and Distributed Computing, 1993, 18(3): 273-300.[11] Cho M H, Cheng C C, Kinsy M, et al. Diastolic arrays: Throughput-driven reconfigurable computing [C]//2008 IEEE/ACM International Conference on Computer-Aided Design. San Jose, CA: IEEE, 2008: 457-464.[12] Dennis J B. Data flow supercomputers [J]. IEEE Computer, 1980, 13(11): 48-56.[13] Veen A H. Dataflow machine architecture [J]. ACM Computing Surveys, 1986, 18(4): 365-396.[14] Sanders J, Kandrot E. CUDA by example: An introduction to general-purpose GPU programming [M]. Boston, MA: Addison-Wesley Professional, 2010.[15] Chiussi F, Bakhru U, Brizio A, et al. A chipset for scalable QoS-preserving protocol-independent packet switch fabrics [C]// Proceedings of 2001 IEEE International Solid-State Circuits Conference. San Jose, CA: IEEE, 2001: 448-500.[16] Hu C, Tang Y, Chen X, et al. Per-flow queueing by dynamic queue sharing [C]// Proceedings of 26th IEEE International Conference on Computer Communications, in IEEE INFOCOM 2007. Anchorage, AK: IEEE, 2007: 1613-1621.[17] Sweldens W. The lifting scheme: A new philosophy in biorthogonal wavelet constructions [J]. Wavelet Applications in Signal and Image Processing, 1995, 3: 68-79.[18] Cohen A, Daubechies I, Feauveau J C. Biorthogonal bases of compactly supported wavelets [J]. Communications on Pure and Applied Mathematics, 1992, 45: 485-560.[19] Chen T, Wu H R, Yu Z H. Efficient deinterlacing algorithm using edge-based line average interpolation [J]. Optical Engineering, 2000, 39(8): 2101-2105.[20] Erd¨os P, Koren I, Moran S, et al. Minimumdiameter cyclic arrangements in mapping data-flow graphs onto VLSI arrays [J]. Computing Systems Theory, 1988, 21(1): 85-98.[21] Novo D, Li M, Fasthuber R, et al. Exploiting finite precision information to guide data-flow mapping [C]//Proceedings of the 47th Design Automation Conference. Anaheim, CA: ACM, 2010: 248-253.[22] Van Der Laan W J, Jalba A C, Roerdink J B T M. Accelerating wavelet lifting on graphics hardware using CUDA [J]. IEEE Transactions on Parallel and Distributed Systems, 2011, 22(1): 132-146. |
[1] | CAI Shuyu∗ (蔡舒妤), SHI Lizhong (师利中). Airframe Damage Region Division Method Based on Structure Tensor Dynamic Operator [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 757-767. |
[2] | KANG Jie* (亢洁), DING Jumin (丁菊敏), LEI Tao (雷涛),FENG Shujie (冯树杰), LIU Gang (刘港). Interactive Liver Segmentation Algorithm Based on Geodesic Distance and V-Net [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[3] | LIU Xiaoying* (刘晓颖), YUE Yong(岳勇), WANG Chongning (王宠宁), HUANG Jiazan (黄家赞),HUANG Xianwei(黄贤伟), HAO Yanhua(郝艳华). Topology Optimization Method for Calcaneal Prosthesis [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 240-249. |
[4] | CHEN Ziyun (陈子云), XIE Le (谢叻), DAI Peidong (戴培东), ZHANG Tianyu (张天宇). Development of a Robotic Cochlear Implantation System [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 7-14. |
[5] | WANG Zheng (王正), XU Hui (许辉), L v Na (吕娜), TAO Wei∗ (陶卫), CHEN Guodong (陈国栋), CHI Wenzheng (迟文正), SUN Lining (孙立宁). Dynamic Obstacle Avoidance for Application of Human-Robot Cooperative Dispensing Medicines [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 24-35. |
[6] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[7] | LIU Quanchen (刘权宸), ZHANG Pengzhu∗ (张鹏翥). Panoramic and Personalised Intelligent Healthcare Mode [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 121-136. |
[8] | ZOU Yue (邹 悦), LI Lin (李 霖), YANG Xubo (杨旭波). Lightweight Method for Vehicle Re-identification Using Reranking Algorithm Based on Topology Information of Surveillance Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586. |
[9] | LI Lin (李 霖), HU Zeyu(胡泽宇), YANG Xubo (杨旭波). Intelligent Analysis of Abnormal Vehicle Behavior Based on a Digital Twin [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 587-597. |
[10] | HUANG Mengting (黄梦婷), YI Yuhan (易雨菡), ZHANG Guanglin∗ (张光林). Service Caching and Task Offloading for Mobile Edge Computing-Enabled Intelligent Connected Vehicles [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 670-679. |
[11] | SHI Lianxing (石连星), WANG Zhiheng (王志恒), LI Xiaoyong (李小勇) . Novel Data Placement Algorithm for Distributed Storage System Based on Fault-Tolerant Domain [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 463-470. |
[12] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[13] | LIU Ziwen (刘子文), XIAO Lei (肖雷), BAO Jinsong (鲍劲松), TAO Qingbao (陶清宝) . Bearing Incipient Fault Detection Method Based on Stochastic Resonance with Triple-Well Potential System [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 482-487. |
[14] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[15] | SHAN Rui (山蕊), JIANG Lin (蒋林), WU Haoyue (吴昊玥), HE Feilong (贺飞龙), LIU Xinchuang (刘新闯). Dynamical Self-Reconfigurable Mechanism for Data-Driven Cell Array [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 511-521. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||