[1] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowire [J]. Science, 1998, 279(5348): 208-211. [2] Lieber C M. Nanowire superlattices [J]. Nano Letters, 2002, 2(2): 81-82. [3] Lauhon L J, Gudiksen M S, Wang D, et al. Epitaxial core-shell and core-multishell nanowire heterostructures [J]. Nature, 2002, 420: 57-61. [4] Gudiksen M S, Lauhon L J, Wang J S, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics [J]. Nature, 2002, 415: 617-620. [5] Wang K, Chen J J, Zeng Z M, et al. Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays [J]. Applied Physics Letters, 2010, 96(12): 123105.1-4. [6] Wang J Z, Du N, Zhang H, et al. Cu-Si1-xGex core shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries [J]. Journal of Power Sources, 2012, 208: 434-439. [7] Tchernycheva M, Rigutti L, Jacopin G, et al. Photovoltaic properties of GaAsP core-shell nanowires on Si(001) substrate [J]. Nanotechnology, 2012, 23: 265402.1-8. [8] Kim B K, Kim J J, Lee J, et al. Top-gated field-effect transistor and rectifying diode operation of core-shell structured GaP nanowire devices [J]. Physical Review B, 2005, 71(15): 153313.1-4. [9] Ghalamestani S G, Heurlin M, Wernersson L E, et al. Growth of InAs/InP core-shell nanowires with various pure crystal structures [J]. Nanotechnology, 2012, 23(28): 285601.1-10. [10] Chen H T, Xu J, Chen P C, et al. Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage [J]. ACS Nano, 2011, 5(10): 8383-8390. [11] Goldthorpe I A, Marshall A F, Mclntyre P C. Synthesis and strain relaxation of Ge-core/Si-shell nanowire arrays [J]. Nano Letters, 2008, 8(11): 4081-4086. [12] Cui L F, Ruffo R, Chan C K, et al. Crystallineamorphous core-shell silicon nanowire for high capacity and high current battery electrodes [J]. Nano Letters, 2009, 9(1): 491-495. [13] Cui L F, Yang Y, Hsu C M, et al. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries [J]. Nano Letters, 2009, 9(9): 3370-3374. [14] Jing Y H, Meng Q Y. Molecular dynamics simulations of the mechanical properties of crystalline/amorphous silicon core/shell nanowires [J]. Physica B, 2010, 405(10): 2413-2417. [15] Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1-19. [16] Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Physical Review B, 1992, 46(5): 2727-2742. [17] Erhart P, Albe K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide [J]. Physical Review B, 2005, 71(3): 035211.1-14. [18] Jing Y H, Aluru N R. Atomistic simulations on the mechanical properties of a silicon nanofilm covered with grapheme [J]. Computational Materials Science, 2011, 50(10): 3063-3066. [19] M¨uller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity [J]. The Journal of Chemical Physics, 1997, 106(14): 6082-6085. [20] Hoover W G. Canonical dynamics: Equilibrium phase-space distributions [J]. Physical Review A, 1985, 31(3): 1695-1697. [21] Yi T, Li L, Kim C J. Microscale material testing of single crystalline silicon: Process effects on surface morphology and tensile strength [J]. Sensors and Actuators, 2000, 83: 172-178. [22] Tabib-Azar M, Nassirou M, Wang R, et al. Mechanical properties of self-welded silicon nanobridges [J]. Applied Physics Letters, 2005, 87(11): 113102.1-3. [23] Wang J, Kulkarni A J, Ke F J, et al. Novel mechanical behavior of ZnO nanorods [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197: 3182-3189. [24] Donadio D, Galli G. Atomistic simulations of heat transport in silicon nanowires [J]. Physical Review Letters, 2009, 102(19): 195901.1-4. [25] Donadio D, Galli G. Temperature dependence of the thermal conductivity of thin silicon nanowires [J]. Nano Letters, 2010, 10: 847-851. [26] Hu M, Zhang X L, Giapis K P, et al. Thermal conductivity reduction in core-shell nanowires [J]. Physical Review B, 2011, 84(8): 085442.1-9. [27] Hu M, Giapis K P, Goicochea J V, et al. Significant reduction of thermal conductivity in Si/Ge core-shell nanowires [J]. Nano Letters, 2010, 11: 618-623. [28] Ren C L, Zhang W, Xu Z J, et al. Thermal conductivity of single-walled carbon nanotubes under axial stress [J]. The Journal of Physical Chemistry C, 2010, 114(13): 5786-5791. |