[1] Mindess S, Young J F, Drwin D. Concrete [M]. New Jersey: Prentice Hall, 2003. [2] Sersale R, Frigione G. Portland-zeolite-cement for minimising alkali-aggregat-expansion [J]. Cement and Concrete Research, 1987, 17(3): 404-410. [3] Talling B, Brandstetr J. Present state and future of alkali-activated slag concretes [C]// Third International Conference Proceedings: Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete. Trondheim Norway: [s.n.], 1989: 1519-1546. [4] Richardson I G. The nature of C-S-H in hardened cements [J]. Cement and Concrete Research, 1999, 29(8): 1131-1147. [5] Brough A R, Katz A, Sun G K, et al. Adiabatically cured, alkali-activated cement-based wasteforms containing high levels of fly ash: Formation of zeolites and Al-substituted C-S-H [J]. Cement and Concrete Research, 2001, 31(10): 1437-1447. [6] Jennings H M. Colloid model of C-S-H and implications to the problem of creep and shrinkage [J]. Materials and Structures, 2004, 37(1): 59-70. [7] Paspaliaris I, Karalis A. The effect of various additives on diasporic bauxite leaching by the Bayer process [C]// Proceedings of Light Metals. Denver, Colorado, USA: AIME, 1993: 35-39. [8] Liu Xiao-ming, Sun Heng-hu, Feng Xiang-peng, et al. Study on thermal activation technics of red mud [J]. Rare Metal Material and Engineering, 2007, 36(sup1): 983-986 (in Chinese). [9] Basu P. Reactions of iron minerals in sodium aluminate solutions [C]//Proceedings of Light Metals. Atlanta, GA: AIME, 1983: 83-97. [10] Solymar K, Sajo I, Steiner J, et al. Characteristics and separability of red mud [C]//Proceedings of Light Metals. San Diego, California, USA: AIME, 1992: 209-223. [11] Liu X M, Zhang N, Sun H H, et al. Structural investigation relating to the cementitious activity of bauxite residue—red mud [J]. Cement and Concrete Research, 2011, 41(8): 847-853. [12] Zhang N, Sun H H, Liu X M, et al. Early-age characteristics of red mud-coal gangue cementitious material [J]. Journal of Hazardous Materials, 2009, 167(1-3): 927-932. [13] Singh M, Upadhayay S N, Prasad P M. Preparation of iron rich cements using red mud [J]. Cement and Concrete Research, 1997, 27(7): 1037-1046. [14] Potgieter J H, Horne K A, Potgieter S S, et al. An evaluation of the incorporation of a titanium dioxide producer’s waste material in Portland cement clinker [J]. Materials Letters, 2002, 57(1): 157-163. [15] Sun H H, Li H J, Li Y, et al. Establishment of silicaalumina based cementitious system—sialite [J]. Rare Metal Material and Engineering, 2004, 33(sup2): 104-109. [16] Li H J, Sun H H, Xiao X J, et al. Mechanical properties of gangue-containing aluminosilicate based cementitious materials [J]. Journal of University of Science and Technology Beijing, 2006, 13(2): 183-189. [17] Li H J, Sun H H, Tie X C, et al. Dissolution properties of calcined gangue [J]. Journal of University of Science and Technology Beijing, 2006, 13(6): 570-576. [18] Feng X P, Sun H H, Liu X M. Practice of simulation to formation of rock theory [J]. Key Engineering Material, 2006, 336-338: 1918-1920. [19] Wang S D, Scrivener K L. 29Si and 27Al NMR study of alkali-activated slag [J]. Cement and Concrete Research, 2003, 33(5): 769-774. [20] Fern′andez-Jim′enez A, Puertas F, Sobrados I, et al. Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator [J]. Journal of the American Ceramic Society, 2003, 86(8): 1389-1394. [21] Puertas F, Fern′andez-Jim′enez A, Blanco-Varela M T. Pore solution in alkali-activated slag cement pastes: Relation to the composition and structure of calcium silicate hydrate [J]. Cement and Concrete Research, 2004, 34(1): 139-148. [22] Engelhardt G, Michel D. High-resolution solidstate NMR of silicates and zeolites [M]. New York: John Wiley and Sons, 1987. [23] Andersen M D, Jakobsen H J, Skibsted J. Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated Portland cements: A high-field Al-27 and Si-29 MAS NMR investigation [J]. Inorganic Chemistry, 2003, 42(7): 2280-2287. [24] Singh P S, Trigg M, Burgar I, et al. Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR [J]. Materials Science and Engineering, 2005, 396(1-2): 392-402. [25] Clayden N J, Esposito S, Jayasooriya U A, et al. Solid state 29Si NMR and FT Raman spectroscopy of the devitrification of lithium metasilicate glass [J]. Journal of Non-Crystalline Solids, 1998, 224(1): 50-56. [26] Black L, Garbev K, Stemmermann P, et al. Characterisation of crystalline C-S-H phases by X-ray photoelectron spectroscopy [J]. Cement and Concrete Research, 2003, 33(6): 899-911. [27] Faucon P, Charpentier T, Bertrandie D, et al. Characterization of calcium aluminate hydrates and related hydrates of cement pastes by 27Al MQ-MAS NMR [J]. Inorganic Chemistry, 1998, 37(15): 3726-3733. [28] Faucon P, Charpentier T, Nonat A, et al. Triplequantum two-dimensional 27Al magic angle nuclear magnetic resonance study of the aluminum incorporation in calcium silicate hydrates [J]. Journal of the American Chemistry Society, 1998, 120(46): 12075-12082. [29] Faucon P, Petit J C, Charpentier T, et al. Silicon substitution for aluminum in calcium silicate hydrates [J]. Journal of the American Ceramic Society, 1999, 82(5): 1307-1312. [30] Toba M, Mizukami F, Niwa S, et al. Effect of preparation methods on properties of amorphous alumina silicas [J]. Journal of Materials Chemistry, 1994, 4(7): 1131-1135. [31] Kirkpatrick R J, Brow R K. Nuclear magnetic resonance investigation of the structures of phosphate and phosphate-containing glasses: A review [J]. Solid State Nuclear Magnetic Resonance, 1995, 5(1): 9-21. [32] Mackenzie K J D, Hartman J S, Okada K. MAS NMR evidence for the presence of silicon in the alumina spinel from thermally transformed kaolinite [J]. Journal of the American Ceramic Society, 1996, 79(11): 2980-2982.
|