[1] Li Yong-yan, Ding Jian, Xue Hai-tao, et al. Current research on ignition-proof magnesium alloys [J]. Material Sciences, 2011(1): 56-59 (in Chinese).[2] Wang Z H, Wang X D, Li S B, et al. Effects of Gd and Er on the ignition-proof properties of magnesium alloy [J]. Advanced Materials Research, 2011, 239-242:122-126.[3] Liu M, Shih D S, Parish C, et al. The ignition temperature of Mg alloys WE43, AZ31 and AZ91 [J]. Corrosion Science, 2012, 54: 139-142.[4] Fan J F, Yang C L, Han G, et al. Oxidation behavior of ignition-proof magnesium alloys with rare earth addition [J]. Journal of Alloys and Compounds, 2011,509: 2137-2142.[5] Huang X F, Zhou H, He Z M. Structure analysis of oxidation film of ignition-inhibition AZ91D magnesium alloy added with cerium [J]. Journal of Rare Earths,2003, 21(1): 73-76[6] Ravi-Kumar N V, Blandin J J, Su′ery M, et al. Effect of alloying elements on the ignition resistance of magnesium alloys [J]. Scripta Materialia, 2003, 49(3):225-230.[7] Wang Shi-jun, Wang Quan, Wang Xian. The relation between the content of Al in Mg-Al alloy and the burning point of Mg-Al alloy [J]. Light Metal, 2007(7):46-47 (in Chinese).[8] Zhao W M, Sun Y, Li H, et al. The effects of some elements on the igniting temperature of magnesium alloys [J]. Materials Science and Engineering B, 2006,127: 105-107.[9] Nie J F, Muddle B C. Characterization of strengthening precipitate phases in a Mg-Y-Nd alloy [J]. Acta Materialia, 2000, 48(8): 1691-1703.[10] Nie J F, Gao X, Zhu S M. Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn [J]. Scripta Materialia, 2005, 53(9): 1049-1053.[11] He S M, Zeng X Q, Peng L M, et al. Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal ageing at 250℃ [J]. Journal of Alloys and Compounds,2006, 421(1-2): 309-313.[12] Cizek J, Prochazka I, Smola B, et al. Influence of deformation on precipitation process in Mg-15wt.%Gd alloy [J]. Journal of Alloys and Compounds, 2007,430(1-2): 92-96.[13] Zhu Y M, Morton A J, Nie J F. Improvement in the age-hardening response of Mg-Y-Zn alloys by Ag additions [J]. Scripta Materialia, 2008, 58: 525-528[14] Gao X, Nie J F. Enhanced precipitation-hardening in Mg-Gd alloys containing Ag and Zn [J]. Scripta Materialia,2008, 58: 619-622[15] Yamada K, Hoshikawa H, Maki S, et al. Enhanced age-hardening and formation of plate precipitates in Mg-Gd-Ag alloys [J]. Scripta Materialia, 2009, 61:636-639[16] Wu Y J, Zeng X Q, Lin D L, et al. The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96.5Gd2.5Zn1 alloy during solid solution heat treatment at 773K [J]. Journal of Alloys and Compounds,2009, 477: 193-197.[17] Wu Y J, Peng L M, Lin D L, et al. A high-strength extruded Mg-Gd-Zn-Zr alloy with superplasticity [J].Journal of Material Research, 2009, 24(12): 3596-3602.[18] Ding W J, Wu Y J, Peng L M, et al. Formation of 14H-type long period stacking ordered structure in the as-cast and solid-solution-treated Mg-Gd-Zn-Zr alloys [J]. Journal of Material Research, 2009, 24(5): 1842-1854.[19] Wu Y J, Lin D L, Zeng X Q, et al. Formation of a lamellar 14H-type long period stacking ordered structure in an as-cast Mg-Gd-Zn-Zr alloy [J]. Journal of Material Science, 2009, 44: 1607-1612.[20] Honma T, Ohkubo T, Kamado S, et al. Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys [J]. Acta Materialia, 2007, 55(12): 4137-4150. |