J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (1): 120-130.doi: 10.1007/s12204-022-2537-z
所属专题: 医学图像
田圆圆,金衍瑞,李志远,刘金磊,刘成良
接受日期:
2022-08-30
出版日期:
2024-01-24
发布日期:
2024-01-24
TIAN Yuanyuan (田圆圆), JIN Yanrui (金衍瑞), LI Zhiyuan (李志远), LIU Jinlei (刘金磊), LIU Chengliang∗ (刘成良)
Accepted:
2022-08-30
Online:
2024-01-24
Published:
2024-01-24
摘要: 该文目标是构建一个能实现多科室级别的基于症状的疾病自动诊断模型。但构建分类几千种疾病的模型、同时收集成千上万种疾病-症状数据集这两个任务是现有研究难以解决的。基于“知识图谱即是模型”的想法,提出了通过不断学习数据中的经验知识,增量式地注入到知识图谱中,以此来构建一个注入“经验”的知识模型。即通过增量式学习、注入来解决数据收集问题,通过将知识图谱模型化、容器化来解决超多分类问题。首先通过图谱融合构建了一份异构知识图谱并设计了一个实体链接方法。然后对于每份数据集构建一个自适应的神经网络模型,利用数据实现统计学初始化和模型训练。最后将学习完成的神经网络模型中权重和偏置更新到异构图谱中。对于增量过程,同时考虑了数据增量和类别增量两种情况。在三份公共数据集上评估了模型在当前数据集上的诊断效果,以及类别增量后对历史数据集的抗遗忘能力两个性能;与经典模型相比,诊断正确率分别平均提高了5%、2%和15%;同时模型在增量学习下具有较好的抗遗忘能力。
中图分类号:
田圆圆,金衍瑞,李志远,刘金磊,刘成良. 基于加权异构图谱的增量式疾病自动诊断方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 120-130.
TIAN Yuanyuan (田圆圆), JIN Yanrui (金衍瑞), LI Zhiyuan (李志远), LIU Jinlei (刘金磊), LIU Chengliang∗ (刘成良). Weighted Heterogeneous Graph-Based Incremental Automatic Disease Diagnosis Method[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 120-130.
[1] ZHANG W, ZHOU J, LIU G, et al. A study on the online medical consulting websites based on the personal computer side [J]. Chinese Journal of Epidemiology, 2021, 42(2): 303-308 (in Chinese). [2] The epidemic has led to an explosion in online consultations and telemedicine [J]. Chinese Computed Medical Imaging, 2020, 26(6): 520 (in Chinese). [3] LIU Q C, ZHANG P Z. Panoramic and personalised intelligent healthcare mode [J]. Journal of Shanghai Jiao Tong University (Science), 2022, 27(1): 121-136. [4] CUI X R. Profession research on China’s mobile health industry [D]. Beijing: Beijing Foreign Studies University, 2021 (in Chinese). [5] ESTEVA A, ROBICQUET A, RAMSUNDAR B, et al. A guide to deep learning in healthcare [J]. Nature Medicine, 2019, 25(1): 24-29. [6] WEI Z Y, LIU Q L, PENG B L, et al. Task-oriented dialogue system for automatic diagnosis [C] // 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Melbourne: ACL, 2018: 201-207. [7] LIAO K, LIU Q L, WEI Z Y, et al. Task-oriented dialogue system for automatic disease diagnosis via hierarchical reinforcement learning [DB/OL]. (2020-04-29). https://arxiv.org/abs/2004.14254. [8] KAO H C, TANG K F, CHANG E Y. Context-aware symptom checking for disease diagnosis using hierarchical reinforcement learning [J] .Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32: 2305-2313. [9] XIA Y, ZHOU J B, SHI Z H, et al. Generative adversarial regularized mutual information policy gradient framework for automatic diagnosis [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34: 1062-1069. [10] LIN X, ZHOU Q X, GONG K, et al. End-to-End Knowledge-Routed Relational Dialogue System for Automatic Diagnosis [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 7346-7353. [11] ZHAO X, CHEN L, CHEN H. A weighted heterogeneous graph-based dialog system [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021. https://doi.org/10.1109/TNNLS.2021.3124640. [12] TIWARI A, SAHA S, BHATTACHARYYA P. A knowledge infused context driven dialogue agent for disease diagnosis using hierarchical reinforcement learning [J]. Knowledge-Based Systems, 2022, 242: 108292. [13] NILASHI M, AHMADI H, MANAF A A, et al. Coronary heart disease diagnosis through self-organizing map and fuzzy support vector machine with incremental updates [J]. International Journal of Fuzzy Systems, 2020, 22(4): 1376-1388. [14] RODR′IGUEZ ALDANA Y, MARAN ON REYES E J, MACIAS F S, et al. Nonconvulsive epileptic seizure monitoring with incremental learning [J]. Computers in Biology and Medicine, 2019, 114: 103434. [15] SIRSHAR M, HASSAN T, AKRAM M U, et al. An incremental learning approach to automatically recognize pulmonary diseases from the multi-vendor chest radiographs [J]. Computers in Biology and Medicine, 2021, 134: 104435. [16] CHAI X Q. Diagnosis method of thyroid disease combining knowledge graph and deep learning [J]. IEEE Access, 2020, 8: 149787-149795. [17] XIE Y, HU L, CHEN X, et al. Auxiliary diagnosis based on the knowledge graph of TCM syndrome [J]. Computers, Materials & Continua, 2020, 65(1): 481-494. [18] XIE J, JIANG J C, WANG Y H, et al. Learning an expandable EMR-based medical knowledge network to enhance clinical diagnosis [J]. Artificial Intelligence in Medicine, 2020, 107: 101927. [19] HOU M W, WEI R, LU L, et al. Research review of knowledge graph and its application in medical domain [J]. Journal of Computer Research and Development, 2018, 55(12): 2587-2599 (in Chinese). [20] SONG D Q, ZHOU B, SHEN X W, et al. Dynamic knowledge graph modeling method for ship block manufacturing process [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 544-556 (in Chinese). [21] FENG G F, DU Z K, WU X. A Chinese question answering system in medical domain [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 678-683. [22] ZAN H Y, HAN Y C, FAN Y X, et al. Construction and analysis of symptom knowledge base in Chinese [J]. Journal of Chinese Information Processing, 2020, 34(4): 30-37 (in Chinese). [23] LIN X Z, HE X H, CHEN Q, et al. Enhancing dialogue symptom diagnosis with global attention and symptom graph [C]// 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing. Hong Kong: ACL, 2019: 5033-5042. [24] CUI Y M, CHE W X, LIU T, et al. Revisiting pre-trained models for Chinese natural language processing [DB/OL]. (2020-11-02). https://arxiv.org/abs/2004.13922. [25] MASANA M, LIU X, TWARDOWSKI B, et al. Classincremental learning: survey and performance evaluation on image classification [DB/OL]. (2021-05-06). https://arxiv.org/abs/2010.15277. [26] JIN Y R, LIU J L, LIU Y Q, et al. A novel interpretable method based on dual-level attentional deep neural network for actual multilabel arrhythmia detection [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-11. [27] TEIXEIRA M S, MARAN V, DRAGONI M. The interplay of a conversational ontology and AI planning for health dialogue management [C]//36th ACM/SIGAPP Symposium on Applied Computing.Online. ACM, 2021: 611-619. |
[1] | . 基于改进加权融合的胶囊内镜肠道内壁图像拼接方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 535-544. |
[2] | 黄佳鑫,郭亚丽,高若云,李珊珊. 基于Fisher-Yates置乱和滤波器扩散的医学图像加密方案[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 136-152. |
[3] | 吴旭阳1, 刘晓颖1, 郝艳华1, 刘长煌1, 黄贤伟2. 基于机械导纳与振动传递率的鞋底振动传递特性分析[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 175-186. |
[4] | 杨娜,张淑霞,白牡丹,李珊珊. 基于约瑟夫遍历和超混沌Lorenz系统的医学图像加密[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 91-108. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 52
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 291
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||