[1] CHATZIRALLI I P, KANONIDOU E D, KERYTTOPOULOS P, et al. The value of fundoscopy in general practice [J]. The Open Ophthalmology Journal, 2012, 6: 4-5.
[2] STAAL J, ABRAMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina [J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509.
[3] OWEN C G, RUDNICKA A R, MULLEN R, et al. Measuring retinal vessel tortuosity in 10-year-old children: Validation of the Computer-Assisted Image Analysis of the Retina (CAIAR) program [J]. Investigative Ophthalmology & Visual Science, 2009, 50(5): 2004-2010.
[4] HOOVER A D, KOUZNETSOVA V, GOLDBAUM M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response [J]. IEEE Transactions on Medical Imaging, 2002, 19(3): 203-210.
[5] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[M]//Advances in neural information processing systems 27. Red Hook, NY: Curran Associates, 2014: 2672-2680.
[6] VASU S, KOZINSKI M, CITRARO L, et al. TopoAL: An adversarial learning approach for topology-aware road segmentation [M]//Computer vision-ECCV 2020. Cham: Springer, 2020: 224-240.
[7] LUC P, COUPRIE C, CHINTALA S, et al. Semantic segmentation using adversarial networks [EB/OL]. (2016-11-25). https://arxiv.org/abs/1611.08408.
[8] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation [M]//Medical image computing and computerassisted intervention-MICCAI 2015. Cham: Springer,2015: 234-241.
[9] LI L Z, VERMA M, NAKASHIMA Y, et al. IterNet: retinal image segmentation utilizing structural redundancy in vessel networks [C]//2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass, CO: IEEE, 2020: 3645-3654.
[10] WANG W, YU K C, HUGONOT J, et al. Recurrent UNet for resource-constrained segmentation [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 2142-2151.
[11] WU Y C, XIA Y, SONG Y, et al. Multiscale network followed network model for retinal vessel segmentation [M]//Medical image computing and computer assisted intervention-MICCAI 2018. Cham: Springer, 2018: 119-126.
[12] MA W A, YU S, MA K, et al. Multi-task neural networks with spatial activation for retinal vessel segmentation and artery/vein classification [M]//Medical image computing and computer assisted interventionMICCAI 2019. Cham: Springer, 2019: 769-778.
[13] KINGMA D P, BA J. Adam: A method for stochastic optimization [EB/OL]. (2014-12-22). https://arxiv.org/abs/1412.6980.
[14] JIN Q G, MENG Z P, PHAM T D, et al. DUNet: A deformable network for retinal vessel segmentation [J]. Knowledge-Based Systems, 2019, 178: 149-162.
[15] LI X M, CHEN H, QI X J, et al. H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes [J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674.
|