J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (4): 418-.doi: 10.1007/s12204-023-2584-0
• • 上一篇
卢鹏丽1,陈云天1,廖永刚2
收稿日期:
2021-08-17
接受日期:
2022-03-07
出版日期:
2023-07-28
发布日期:
2023-07-31
LU Pengli1* (卢鹏丽),CHEN Yuntian1 (陈云天), LIAO Yonggang2 (廖永刚)
Received:
2021-08-17
Accepted:
2022-03-07
Online:
2023-07-28
Published:
2023-07-31
摘要: 从蛋白质相互作用网络中识别关键蛋白质对生物进化和新药物研制具有重要意义。目前许多蛋白质关键性的评判标准只关注蛋白质的某个属性,这会有信息丢失的问题。针对这一问题,本文提出一种基于改进多准则决策的更全面有效的关键蛋白质鉴定方法(EPI-TOPSIS)。首先,考虑蛋白质的不同属性,从三个不同的方面来评估蛋白质重要性:基于表达序列的基因度中心性;基于定位信息和蛋白质复合物的亚细胞-邻居度中心性与亚细胞-复合物入度中心性。然后将介数中心性与这三种方法一起考虑作为多准则决策模型的属性准则,采用层次分析法赋予各个准则权重,通过多准则决策的逼近理想距离求解蛋白质关键性,并对蛋白质进行优先级排序。最后,在YDIP、YMIPS、Krogan和BioGRID网络上进行实验,结果表明EPI-TOPSIS性能优于对比算法。
中图分类号:
卢鹏丽1,陈云天1,廖永刚2. 基于改进多准则决策的关键蛋白质识别方案[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 418-.
LU Pengli1* (卢鹏丽),CHEN Yuntian1 (陈云天), LIAO Yonggang2 (廖永刚). Novel Scheme for Essential Proteins Identification Based on Improved Multicriteria Decision Making[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 418-.
[1] KAMATH R S, FRASER A G, DONG Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi [J]. Nature, 2003, 421(6920):231-237. [2] WINZELER A, SHOEMAKER D D, ASTROMOFFA, et al. Functional characterization of the S. cerevisiaegenome by gene deletion and parallel analysis [J]. TheEMBO Journal, 1999, 285(5429): 901-906. [3] JEONG H, MASON S P, BARABáSI A L, et al.Lethality and centrality in protein networks [J]. Nature, 2001, 411(6833): 41-42,. [4] JIMENEZ-SANCHEZ G, CHILDS B, VALLE D. Human disease genes [J]. Nature, 2001, 409(6822): 853-855. [5] GILL N, SINGH S, ASERI T C. Computational disease gene prioritization: An appraisal [J]. Journal ofComputational Biology, 2014, 21(6): 456-465. [6] GIAEVER G, CHU A M, NI L, et al. Functional profiling of the saccharomyces cerevisiae genome [J]. Nature,2002, 418(6896): 387-391. [7] CULLEN L M, ARNDT G M. Genome-wide screeningfor gene function using RNAi in mammalian cells [J].Immunology and Cell Biology, 2005, 83(3): 217-223. [8] ROEMER T, JIANG B, DAVISON J, et al. Large-scaleessential gene identification in Candida albicans andapplications to antifungal drug discovery [J]. MolecularMicrobiology, 2003, 50(1): 167-181. [9] JEONG H, MASON S P, BARABáSI A L, et al.Lethality and centrality in protein networks [J]. Nature, 2001, 411(6833): 41-42. [10] FREEMAN L C. Centrality in social networks conceptual clarification [J]. Social Networks, 1978, 1(3):215-239. [11] JOY M P, BROCK A, INGBER D E, et al. Highbetweenness proteins in the yeast protein interactionnetwork [J]. Journal of Biomedicine and Biotechnology, 2005, 2005: 594674. [12] WUCHTY S, STADLER P F. Centers of complex networks [J]. Journal of Theoretical Biology, 2003, 223(1):45-53. [13] ESTRADA E, RODR′IGUEZ-VELáZQUEZ J A. Subgraph centrality in complex networks [J]. Physical Review E, 2005, 71(5): 056103. [14] BONACICH P. Power and centrality: A family of measures [J]. American Journal of Sociology, 1987, 92(5):1170-1182. [15] LI M, WANG J X, CHEN X, et al. A local average connectivity-based method for identifying essential proteins from the network level [J]. ComputationalBiology and Chemistry, 2011, 35(3): 143-150. [16] WANG J X, LI M, WANG H, et al. Identification ofessential proteins based on edge clustering coefficient[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9(4): 1070-1080. [17] NIE T Y, GUO Z, ZHAO K, et al. Using mapping entropy to identify node centrality in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 453: 290-297. [18] HSING M, BYLER K G, CHERKASOV A. The use ofGene Ontology terms for predicting highly-connected‘hub’ nodes in protein-protein interaction networks [J].BMC systems biology, 2008, 2(1): 80-80. [19] LEI X J, ZHAO J, FUJITA H, et al. Predicting essential proteins based on RNA-Seq , subcellular localization and GO annotation datasets [J]. Knowledge-BasedSystems, 2018, 151: 136-148. [20] XIAO Q H, WANG J X, PENG X Q, et al. Identifying essential proteins from active PPI networks constructed with dynamic gene expression [J]. BMC Genomics, 2015, 16(Suppl3): S1. [21] NEPUSZ T, YU H Y, PACCANARO A. Detectingoverlapping protein complexes in protein-protein interaction networks [J]. Nature Methods, 2012, 9(5): 471-472. [22] ZHANG W, XU J, LI X, et al. A new method for identifying essential proteins by measuring co-expressionand functional similarity [J]. IEEE Transactions onNanobioscience, 2016, 15(8): 939-945. [23] LI M, LU Y, NIU Z B, et al. United complex centrality for identification of essential proteins from PPI networks [J]. IEEE/ACM Transactions on ComputationalBiology and Bioinformatics, 2017, 14(2): 370-380. [24] LUO J, QI Y, Identification of essential proteins basedon a new combination of local interaction densityand protein complexes [J]. PLoS ONE, 2015, 10(6):e0131418. [25] LI M, ZHANG H H, WANG J X, et al. A new essentialprotein discovery method based on the integration ofprotein-protein interaction and gene expression data[J]. BMC Systems Biology, 2012, 6: 15. [26] TANG X W, WANG J X, ZHONG J C, et al. Predicting essential proteins based on weighted degreecentrality [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11(2): 407-418. [27] LUO J, MA L. A new integration-centric algorithm ofidentifying essential proteins based on topology structure of protein-protein interaction network and complex information [J]. Current Bioinformatics, 2013,8(3): 380-385. [28] LU P, YU J, A mixed clustering coefficient centrality for identifying essential proteins [J]. InternationalJournal of Modern Physics B, 2020, 34(10): 5-9. [29] LEI X, YANG X, FUJITA H. Random walk basedmethod to identify essential proteins by integratingnetwork topology and biological characteristics [J].Knowledge Based Systems, 2019, 167: 53-67. [30] LEI X J, YANG X Q, WU F X. Artificial fish swarmoptimization based method to identify essential proteins [J]. IEEE/ACM Transactions on ComputationalBiology and Bioinformatics, 2020, 17(2): 495-505. [31] ZENG M, LI M, WU F X, et al. DeepEP: A deeplearning framework for identifying essential proteins[J]. BMC Bioinformatics, 2019, 20(Suppl16): 506. [32] TZENG G, HUANG J. Multiple attribute decisionmaking: Methods and applications [M]// Boca Raton:CRC Press, 2011. [33] DENG Y, CHAN F T S, WU Y, et al. A new linguistic MCDM method based on multiple-criterion data fusion [J]. Expert Systems with Applications, 2011, 38(6):6985-6993. [34] ABO-SINNA M A, AMER A H, IBRAHIM A S. Extensions of TOPSIS for large scale muti-objective nonliner programming problems with block angular structure [J]. Applied Mathematical Modelling, 2008, 32(3):292-302. [35] LEI X J, ZHAO J, FUJITA H, et al. Predicting Essential proteins based on RNA-Seq, subcellular localization and GO annotation datasets [J]. Knowledge-BasedSystems, 2018, 151: 136-148. [36] XENARIOS I, FERNANDEZ E, SALWINSKI L, etal. DIP: The database of interacting proteins: 2001update [J]. Nucleic Acids Research, 2001, 29(1): 239-241. [37] MEWES H W, FRISHMAN D, MAYER K F X, etal. MIPS: analysis and annotation of proteins fromwhole genomes in 2005 [J]. Nucleic Acids Research,2006, 34(suppl 1): D169-D172. [38] KROGAN N J, CAGNEY G, YU H Y, et al. Globallandscape of protein complexes in the yeast Saccharomyces cerevisiae [J]. Nature, 2006, 440(7084): 637-643. [39] STARK C, BREITKREUTZ B J, CHATRARYAMONTRI A, et al. The BioGRID InteractionDatabase: 2011 update [J]. Nucleic Acids Research,2010, 39(suppl 1): D698-D704. [40] FRIEDEL C C, KRUMSIEK J, ZIMMER R, et al.Bootstrapping the interactome: Unsupervised identifi-cation of protein complexes in yeast [M]// Research incomputational molecular biology. Berlin, Heidelberg:Springer, 2008: 3-16. [41] PU S Y, VLASBLOM J, EMILI A, et al. Identifying functional modules in the physical interactome ofSaccharomyces cerevisiae [J]. Proteomics, 2007, 7(6):944-960. [42] PU S Y, WONG J, TURNER B, et al. Up-to-date catalogues of yeast protein complexes [J]. Nucleic AcidsResearch, 2008, 37(3): 825-831. [43] CHERRY J M, ADLER C, BALL C, et al. SGD: Saccharomyces genome database [J]. Nucleic Acids Research, 1998, 26(1): 73-79. [44] ZHANG R, LIN Y. DEG 5.0, a database of essentialgenes in both prokaryotes and eukaryotes [J]. NucleicAcids Research, 2008, 37(suppl 1): D455-D458. [45] WINZELER E A, SHOEMAKER D D, ASTROMOFFA, et al. Functional characterization of the S. cerevisiaegenome by gene deletion and parallel analysis [J]. Science, 1999, 285(5429): 901-906. [46] BINDER J X, PLETSCHER-FRANKILD S,TSAFOU K, et al. COMPARTMENTS: Unificationand visualization of protein subcellular localizationevidence [J]. Database, 2014, 2014: bau012. [47] TU B P, KUDLICKI A, ROWICKA M, et al. Logicof the yeast metabolic cycle: Temporal compartmentalization of cellular processes [J]. Science, 2005,310(5751): 1152-1158. [48] HOLMAN A G, DAVIS P J, FOSTER J M, Computational prediction of essential genes in an unculturableendosymbiotic bacterium, Wolbachia of Brugia malayi[J]. BMC Microbiology, 2009, 9: 243. |
[1] | ZHOU Jian (周剑), YANG Qidong (杨启东), ZHANG Xiaofei (张小飞), HAN Chong (韩崇), SUN Lij. Traffic Prediction Method for GEO Satellites Combining ARIMA Model and Grey Model[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 65-69. |
[2] | ZHANG Ying (张颖), LI Peisong (李培嵩), MAO Lin (毛林). Research on Improved Low-Energy Adaptive Clustering Hierarchy Protocol in Wireless Sensor Networks[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 613-619. |
[3] | SU Mang (苏铓), WANG Liangchen (汪良辰), FU Anmin (付安民), YU Yan (俞研). Proxy Re-Encryption Based Multi-Factor Access Control for Ciphertext in Cloud[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 666-670. |
[4] | XU Yuemei1* (徐月梅), WANG Zihou2 (王子厚), LI Yang3 (李杨), CAI Lianqiao1 (蔡连侨). Trade-off in Optimizing Energy Consumption and End User Quality of Experience in Radio Access Network[J]. 上海交通大学学报(英文版), 2017, 22(6): 742-751. |
[5] | ZHANG Honga* (张 红), HU Changzhenb (胡昌振), WANG Xiaojuna (王小军). Brittleness Analysis and Important Nodes Discovery in Large Time-Evolving Complex Networks[J]. 上海交通大学学报(英文版), 2017, 22(1): 50-054. |
[6] | ZENG Bin* (曾 斌), YAO Lu (姚 路), HU Wei (胡 炜). Priority Based Data Reporting Algorithm in Wireless Sensor Networks[J]. 上海交通大学学报(英文版), 2017, 22(1): 60-065. |
[7] | XING Yu-xuan1* (邢玉轩), XIAO Nong1 (肖侬), LIU Fang1 (刘芳), SUN Zhen1 (孙振), HE Wan-hu. AR-Dedupe: An Efficient Deduplication Approach for Cluster Deduplication System[J]. 上海交通大学学报(英文版), 2015, 20(1): 76-81. |
[8] | HE Jing-sha1,2 (何泾沙), XU Chen1* (徐琛), ZHANG Yi-xuan1 (张伊璇), ZHOU Shi-yi2 (周世义). A Strategy for Middleman Attack Prevention in Remote Desktop Protocol[J]. 上海交通大学学报(英文版), 2015, 20(1): 82-85. |
[9] | XIE Qi* (谢 琪), LIU Wen-hao (刘文浩), WANG Sheng-bao (王圣宝),HU Bin (胡 斌), DONG Na (董 . Robust Password and Smart Card Based Authentication Scheme with Smart Card Revocation[J]. 上海交通大学学报(英文版), 2014, 19(4): 418-424. |
[10] | CHEN Chia-mei1 (陈嘉玫), LAI Gu-hsin2* (赖谷鑫). Research on Classification of Malware Source Code[J]. 上海交通大学学报(英文版), 2014, 19(4): 425-430. |
[11] | LU Hong-fang1,2*(吕红芳), ZHANG Hao1,3 (张浩). Stochastic Optimization in Cooperative Relay Networks for Revenue Maximization[J]. 上海交通大学学报(英文版), 2014, 19(3): 287-293. |
[12] | QIAO Bai-you (乔百友), WEI Yong (魏勇), WANG Xiao-yang (王潇杨) DING Lin-lin (丁琳琳), WANG. TDRM: A Peer-to-Peer-Based Taxonomy Data Ring Model[J]. 上海交通大学学报(英文版), 2012, 17(2): 182-189. |
[13] | WANG Fang 1 (王芳), WEI Zhe2 (魏哲). Energy-Saving Reputation Method for Wireless Sensor Networks[J]. 上海交通大学学报(英文版), 2012, 17(2): 223-227. |
[14] | XU Zhi-guang1 (徐志广), ZHU Lei-ji1 (朱磊基), SHI Yu-song1 (施玉松), JIANG hua2 (姜华). Research of Scalability of the Belt-Type Sensor Networks[J]. 上海交通大学学报(英文版), 2012, 17(2): 237-240. |
[15] | YANG Ming-hour (杨明豪). Security Analysis of Application Layer Protocols on Wireless Local Area Networks[J]. 上海交通大学学报(英文版), 2011, 16(5): 586-592. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||