J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (2): 233-242.doi: 10.1007/s12204-021-2316-2
王珏,李朋,宋诗瑶
收稿日期:
2019-04-02
接受日期:
2019-05-10
出版日期:
2023-03-28
发布日期:
2023-03-21
WANG Jue∗ (王 珏), LI Peng (李 朋), SONG Shiyao (宋诗瑶)
Received:
2019-04-02
Accepted:
2019-05-10
Online:
2023-03-28
Published:
2023-03-21
摘要: 由于箱体结构的差异,长悬臂式齿轮箱的受力状态与普通齿轮箱不同。传统的力学分析方法将悬臂式齿轮箱体视作悬臂梁,或者是普通箱体,相关研究文献很少。本文以采煤机截割部齿轮箱(SCUG)为例,根据SCUG的疲劳原因,研究了其力学分析方法。建立了力分析模型,找出低频载荷引起的静态疲劳区域,并利用局部共振分析找出高频载荷引起的振动疲劳区域。在力分析模型中,不仅考虑了弯曲力矩,还考虑了齿轮啮合力引起的扭矩。通过切削试验获得了振动响应,通过频域分析获得了局部共振的主频。建立了SCUG的有限元模型,并对其固有频率和应变模态进行了分析,得到了与主频相对应的主要振动模态。因此,获得了由低频和高频载荷引起的大应力区域。结果表明,最恶劣的工作条件是斜切截割,在600 mm切削深度下B-B的应力可达166 MPa。很显然,950 Hz、1 250 Hz和1 400 Hz是SCUG的主要频率(第23、25和27个自然频率)。最后,本文提出了悬臂齿轮箱壳体力学分析方法的一些原则。
中图分类号:
王珏, 李朋, 宋诗瑶. 悬臂式齿轮箱体的力学分析方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 233-242.
WANG Jue∗ (王 珏), LI Peng (李 朋), SONG Shiyao (宋诗瑶). Mechanical Analysis Methods of Cantilever Gearbox Housing[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 233-242.
[1] | LIU W G, CHENG P, HE H L, et al. Review of studying on vibration fatigue [J]. Chinese Journal of Engineering Design, 2012, 19(1): 1-8 (in Chinese). |
[2] | YAO Q H, YAO J. Vibration fatigue in engineering structures [J]. Chinese Journal of Applied Mechanics, 2006, 23(1): 12-15, 167-168 (in Chinese). |
[3] | KANG M R, KAHRAMAN A. An experimental and theoretical study of the dynamic behavior of double-helical gear sets [J]. Journal of Sound and Vibration, 2015, 350: 11-29. |
[4] | ZHU L S, ZHANG Y M, ZHANG R, et al. Time-dependent reliability of spur gear system based on gradually wear process [J]. Eksploatacjai Niezawodnosc: Maintenance and Reliability, 2018, 20(2): 207-218. |
[5] | LI G Q, LIU Z M, WANG W J, et al. Fatigue crack mechanism study on high-speed EMU gearbox [J]. Journal of Mechanical Engineering, 2017, 53(2): 99-105 (in Chinese). |
[6] | HU W G, LIU Z M, LIU D K, et al. Fatigue failure analysis of high speed train gearbox housings [J]. Engineering Failure Analysis, 2017, 73: 57-71. |
[7] | WEI J, ZHANG A Q, QIN D T, et al. A coupling dynamics analysis method for a multistage planetary gear system [J]. Mechanism and Machine Theory, 2017, 110: 27-49. |
[8] | HE Z X, CHANG L H, LIU L. Dynamic response analysis of planetary gear transmission system coupled with gearbox vibrations [J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(9): 128-134 (in Chinese). |
[9] | SONG C S, ZHU C C, LIU H J, et al. Dynamic analysis and experimental study of a marine gearbox with crossed beveloid gears [J]. Mechanism and Machine Theory, 2015, 92: 17-28. |
[10] | WANG F, FANG Z D, LI S J, et al. Analysis optimization and experimental verification of herringbone gear transmission system [J]. Journal of Mechanical Engineering, 2015, 51(1): 34-42 (in Chinese). |
[11] | TAN Y Q, HU C F, ZHANG Y C, et al. Testing research on dynamic load sharing performance of encased differential planetary gearbox [J]. Journal of Mechanical Engineering, 2016, 52(9): 28-35 (in Chinese). |
[12] | CHANG L H, HE Z X, LIU G. Dynamic modeling of parallel shaft gear transmissions using finite element method [J]. Journal of Vibration and Shock, 2016, 35(20): 47-53 (in Chinese). |
[13] | HUANG G H, WANG X Y, MEI G M, et al. Dynamic response analysis of gearbox housing system subjected to internal and external excitation in high-speed train [J]. Journal of Mechanical Engineering, 2015, 51(12): 95-100 (in Chinese). |
[14] | ZHAI H F, ZHU C C, SONG C S, et al. Dynamic characteristics of a high-power wind turbine gearbox coupled system [J]. Journal of Vibration and Shock, 2017, 36(8): 97-104 (in Chinese). |
[15] | GONZA′LEZ-CRUZ C A, JA′UREGUI-CORREA J C, DOM′INGUEZ-GONZA′LEZ A, et al. Effect of the coupling strength on the nonlinear synchronization of a single-stage gear transmission [J]. Nonlinear Dynamics, 2016, 85: 123-140. |
[16] | LIU C Z, QIN D T, LIAO Y H. Electromechanical dynamic analysis for the drum driving system of the long-wall shearer [J]. Advances in Mechanical Engineering, 2015, 7(10): 1-14. |
[17] | ZHAO L J, MA L W. Thin seam shearer reliability analysis and fatigue life prediction [J]. Journal of China Coal Society, 2013, 38(7): 1287-1292 (in Chinese). |
[18] | ZHAO L J, TIAN Z. Vibration characteristics of thin coal seam shearer [J]. Journal of Vibration and Shock, 2015, 34(1): 195-199 (in Chinese). |
[19] | ZHAO L J, TIAN Z. Simulation on dynamic characteristics of cutting unit for thin seam shearer [J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(9): 1329-1334 (in Chinese). |
[20] | ZHAO L J, CHEN P, SONG P. Vibration characteristic analysis of shearer cutting unit and the transmission system structure optimization [J]. Journal of Mechanical Transmission, 2015, 39(1): 131-134 (in Chinese). |
[21] | LIU C S. Theoretical design basis of drum shearer [M]. Xuzhou: China University of Mining and Technology Press, 2003: 128-131 (in Chinese). |
[22] | HUANG J. Dynamic research and dynamic-gradual coupling reliability analysis of the transmission system of a shearer cutting arm [D]. Shenyang: Northeastern University, 2016 (in Chinese). |
[1] | 杨丹,余海东,林张鹏. 基于绝对节点坐标法的柔性复合结构动力学分析与最优参数设计[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 621-629. |
[2] | 尚宇晴, 付丽强, 刘广, 涂静, 吴烁. 防御战车行进间发射虚拟样机建模与仿真[J]. 空天防御, 2021, 4(2): 74-. |
[3] | 刘爱虢1,朱悦1,陈保东1,曾文1,翁一武2,刘凯1,王成军1. 某重型燃气轮机NOx排放性能反应动力学数值计算[J]. 上海交通大学学报(自然版), 2017, 51(11): 1383-1390. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 44
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 360
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||