J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (2): 161-171.doi: 10.1007/s12204-021-2397-y
• • 下一篇
AZEMTSOP Manfo Theodore1, MEHRA Ram Mohan2, KUMAR Yogesh3, GUPTA Meenal1
收稿日期:
2020-12-25
接受日期:
2021-03-17
出版日期:
2023-03-28
发布日期:
2023-03-21
AZEMTSOP Manfo Theodore1, MEHRA Ram Mohan2, KUMAR Yogesh3, GUPTA Meenal1
Received:
2020-12-25
Accepted:
2021-03-17
Online:
2023-03-28
Published:
2023-03-21
摘要: 以聚乙烯醇(PVA)和硫氰酸钠为主要原料,采用溶液浇铸造工艺研制了新型凝胶聚合物电解质(GPEs)。将1-乙基-3-甲基-咪唑三氰基甲烷化物([EMIM][TCM])的离子液体掺入到聚合物-盐配合物体系(PVA + NaSCN),以进一步提高导电性能。利用X射线衍射(XRD)、偏光显微镜术(POM)、傅里叶变换红外光谱(FTIR)和电导率测量对离子液体掺杂的聚合物电解质薄膜进行了表征。通过XRD测试了离子液体掺杂聚合物电解质薄膜的结晶度和非结晶性,发现随着离子液体含量的增加,新型凝胶聚合物电解质的非结晶性增加。POM测评了聚乙烯醇中盐和离子液体的加入对表面形貌的影响。通过FTIR研究了新型凝胶聚合物电解质薄膜的组成性质。采用循环伏安法和电化学阻抗谱对其电学和电化学性能进行了表征。聚合物-盐复合物中离子液体的质量分数为6%时,新型凝胶聚合物电解质薄膜的最大电导率为1.10 × 10-5 S/cm。离子迁移数约为0.97。利用优化的新型凝胶聚合物电解质薄膜和还原氧化石墨烯基电极制备了电化学双层电容器。由循环伏安法计算的电化学双层电容器电池的比电容为3 F/g。
中图分类号:
AZEMTSOP Manfo Theodore, MEHRA Ram Mohan, KUMAR Yogesh, GUPTA Meenal . 用于电化学双层电容器的离子液体改性聚乙烯醇和硫氰酸钠聚合物电解质的物理表征[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 161-171.
AZEMTSOP Manfo Theodore , MEHRA Ram Mohan , KUMAR Yogesh , GUPTA Meenal . Physical Characterization of Ionic Liquid-Modified Polyvinyl Alcohol and Sodium Thiocyanate Polymer Electrolytes for Electrochemical Double-Layer Capacitor Application[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 161-171.
[1] | BHARGAV P B, MOHAN V M, SHARMA A K, et al. Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications [J]. Ionics, 2007, 13(6): 441-446. |
[2] | SRIVASTAVA N., CHANDRA A, CHANDRA S. Dense branched growth of (SCN)x and ion transport in the poly(ethyleneoxide) NH4SCN polymer electrolyte [J]. Physical Review B, Condensed Matter, 1995, 52(1): 225-230. |
[3] | CHOWDARI B V R, CHANDRA S, SINGH S, et al. Solid state ionics: Materials and applications [M]. Varanasi: World Scientific, 1992. |
[4] | KUMAR Y, HASHMI S A, PANDEY G P. Lithium ion transport and ion-polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid [J]. Solid State Ionics, 2011, 201(1): 73-80. |
[5] | TUHANIA P, SINGH P K, BHATTACHARYA B, et al. PVDF-HFP and 1-ethyl-3-methylimidazolium thiocyanate-doped polymer electrolyte for efficient supercapacitors [J]. High Performance Polymers, 2018, 30(8): 911-917. |
[6] | GUPTA S, SINGH P K, BHATTACHARYA B. Low-viscosity ionic liquid-doped solid polymer electrolytes [J]. High Performance Polymers, 2018, 30(8): 986-992. |
[7] | DHAPOLA P S, SINGH P K, BHATTACHARYA B, et al. Electrical, thermal, and dielectric studies of ionic liquid-based polymer electrolyte for photoelectro-chemical device [J]. High Performance Polymers, 2018, 30(8): 1002-1008. |
[8] | SINGH D, KANJILAL D, LAXMI G, et al. Conductivity and dielectric studies of Li3+-irradiated PVP-based polymer electrolytes [J]. High Performance Polymers, 2018, 30(8): 978-985. |
[9] | SIYAHJANI S, ONER S, SINGH P K, et al. Highly efficient supercapacitor using single-walled carbon nanotube electrodes and ionic liquid incorporated solid gel electrolyte [J]. High Performance Polymers, 2018, 30(8): 971-977. |
[10] | TAO R Y, FUJINAMI T. Application of mix-salts composed of lithium borate and lithium aluminate in PEO-based polymer electrolytes [J]. Journal of Power Sources, 2005, 146(1/2): 407-411. |
[11] | WANG Y J, PAN Y, CHEN L S. Ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with Li1.3Al0.3Ti1.7(PO4)3 salt [J]. Materials Chemistry and Physics, 2005, 92(2/3): 354-360. |
[12] | DISSANAYAKE M A K L, JAYATHILAKA P A R D, BOKALAWELA R S P. Ionic conductivity of PEO9: Cu(CF3SO3)2 nano-composite solid polymer electrolyte [J]. Electrochimica Acta, 2005, 50(28): 5602-5605. |
[13] | LIEW C W, RAMESH S, AROF A K. Investigation of ionic liquid-based poly(vinyl alcohol) proton conductor for electrochemical double-layer capacitor [J]. High Performance Polymers, 2014, 26(6): 632-636. |
[14] | KADIR M F Z, MAJID S R, AROF A K. Plasticized chitosan-PVA blend polymer electrolyte based proton battery [J]. Electrochimica Acta, 2010, 55(4): 1475-1482. |
[15] | LIEW C W, RAMESH S, AROF A K. Characterization of ionic liquid added poly(vinyl alcohol)-based proton conducting polymer electrolytes and electrochemical studies on the supercapacitors [J]. International Journal of Hydrogen Energy, 2015, 40(1): 852-862. |
[16] | LIEW C W, RAMESH S, AROF A K. Good prospect of ionic liquid based-poly(vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties [J]. International Journal of Hydrogen Energy, 2014, 39(6): 2953-2963. |
[17] | KANBARA T, INAMI M, YAMAMOTO T. New solid-state electric double-layer capacitor using poly(vinyl alcohol)-based polymer solid electrolyte [J]. Journal of Power Sources, 1991, 36(1): 87-93. |
[18] | EVERY H A, ZHOU F, FORSYTH M, et al. Lithium ion mobility in poly(vinyl alcohol) based polymer electrolytes as determined by 7Li NMR spectroscopy [J]. Electrochimica Acta, 1998, 43(10/11): 1465-1469. |
[19] | HIRANKUMAR G, SELVASEKARAPANDIAN S, KUWATA N, et al. Thermal, electrical and optical studies on the poly(vinyl alcohol) based polymer electrolytes [J]. Journal of Power Sources, 2005, 144(1): 262-267. |
[20] | DAMODARAN S, KINSELLA J E. The effects of neutral salts on the stability of macromolecules. A new approach using a protein-ligand binding system [J]. Journal of Biological Chemistry, 1981, 256(7): 3394-3398. |
[21] | BHARGAV P B, MOHAN V M, SHARMA A K, et al. Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications [J]. Ionics, 2007, 13(6): 441-446. |
[22] | NIK AZIZ N A, IDRIS N K, ISA M I N. Solid polymer electrolytes based on methylcellulose: FT-IR and ionic conductivity studies [J]. International Journal of Polymer Analysis and Characterization, 2010, 15(5): 319-327. |
[23] | SAMSUDIN A S, KHAIRUL W M, ISA M I N. Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes [J]. Journal of Non-Crystalline Solids, 2012, 358(8): 1104-1112. |
[24] | SALLEH N S, AZIZ S B, et al. Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide [J]. Ionics, 2016, 22(11): 2157-2167. |
[25] | IQBAL S, KHATOON H, HUSSAIN PANDIT A, et al. Recent development of carbon based materials for energy storage devices [J]. Materials Science for Energy Technologies, 2019, 2(3): 417-428. |
[26] | BACH-TOLEDO L, HRYNIEWICZ B M, MARCHESI L F, et al. Conducting polymers and composites nanowires for energy devices: A brief review [J]. Materials Science for Energy Technologies, 2020, 3: 78-90. |
[27] | MAHESHWARI P H. Developing the processing stages of carbon fiber composite paper as efficient materials for energy conversion, storage, and conservation [J]. Materials Science for Energy Technologies, 2019, 2(3): 490-502. |
[28] | ANJANA P M, BINDHU M R, RAKHI R B. Green synthesized gold nanoparticle dispersed porous carbon composites for electrochemical energy storage [J]. Materials Science for Energy Technologies, 2019, 2(3): 389-395. |
[29] | EEDULAKANTI S R, GAMPALA A K, VENKATESWARA RAO K, et al. Ultrasonication assisted thermal exfoliation of graphene-tin oxide nanocomposite material for supercapacitor [J]. Materials Science for Energy Technologies, 2019, 2(3): 372-376. |
[30] | HUANG S J, LEE H K, KANG W H. Proton conducting behavior of a novel composite based on phosphosilicate/poly(vinyl alcohol) [J]. Journal of the Korean Ceramic Society, 2005, 42(2): 77-80. |
[31] | KRUMOVA M, LO′PEZ D, BENAVENTE R, et al. Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol) [J]. Polymer, 2000, 41(26): 9265-9272. |
[32] | BENAVENTE E, SANTA ANA M A, MENDIZA′BAL F, et al. Intercalation chemistry of molybdenum disulfide [J]. Coordination Chemistry Reviews, 2002, 224(1/2): 87-109. |
[33] | HODGE R M, EDWARD G H, SIMON G P. Water absorption and states of water in semicrystalline poly(vinyl alcohol) films [J]. Polymer, 1996, 37(8): 1371-1376. |
[34] | SAAID F, RODI I, WINIE T. Effect of temperature on the transport property of PVdF-HFP-MPII-PC/DME gel polymer electrolytes [J]. AIP Conference Proceedings, 2017, 1877(1): 020006. |
[35] | MISHRA R, RAO K J. Electrical conductivity studies of poly(ethyleneoxide)-poly(vinylalcohol) blends [J]. Solid State Ionics, 1998, 106(1/2): 113-127. |
[36] | SINGH R, SINGH P K, TOMAR S K, et al. Synthesis, characterization, and dye-sensitized solar cell fabrication using solid biopolymer electrolyte membranes [J]. High Performance Polymers, 2016, 28(1): 47-54. |
[37] | AZIZ S B, HAMSAN M H, ABDULLAH R M, et al. A promising polymer blend electrolytes based on chitosan: Methyl cellulose for EDLC application with high specific capacitance and energy density [J]. Molecules, 2019, 24(13): 2503. |
[38] | SAMPATHKUMAR L, CHRISTOPHER SELVIN P, SELVASEKARAPANDIAN S, et al. Synthesis and characterization of biopolymer electrolyte based on tamarind seed polysaccharide, lithium perchlorate and ethylene carbonate for electrochemical applications [J]. Ionics, 2019, 25(3): 1067-1082. |
[39] | PRATAP R, SINGH B, CHANDRA S. Polymeric rechargeable solid-state proton battery [J]. Journal of Power Sources, 2006, 161(1): 702-706. |
[40] | XU G H, ZHENG C, ZHANG Q, et al. Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors [J]. Nano Research, 2011, 4(9): 870-881. |
[41] | DI FABIO A, GIORGI A, MASTRAGOSTINO M, et al. Carbon-poly(3-methylthiophene) hybrid supercapacitors [J]. Journal of the Electrochemical Society, 2001, 148(8): A845. |
[42] | HARSOJO, DOLOKSARIBU M, PRIHANDOKO B, et al. The effect of reduced graphene oxide on the activated carbon metal oxide supercapacitor [J]. Materials Today : Proceedings, 2019, 13: 181-186. |
[43] | ZHANG L L, ZHAO X, STOLLER M D, et al. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors [J]. Nano Letters, 2012, 12(4): 1806-1812. |
[44] | PALEO A J, STAITI P, BRIGANDì A, et al. Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes [J]. Energy Storage Materials, 2018, 12: 204-215. |
[45] | SHEN H J, ZHANG Y, SONG X L, et al. Facile hydrothermal synthesis of Actiniaria-shaped α-MnO2/activated carbon and its electrochemical performances of supercapacitor [J]. Journal of Alloys and Compounds, 2019, 770: 926-933. |
[46] | WINTERSGILL M C, FONTANELLA J J, GREENBAUM S G, et al. D.s.c., electrical conductivity, and n.m.r. studies of salt precipitation effects in PPO complexes [J]. British Polymer Journal, 1988, 20(3): 195-198. |
[47] | GREENBAUM S G, PAK Y S, WINTERSGILL M C, et al. NMR, DSC, DMA, and high pressure electrical conductivity studies in PPO complexed with sodium perchlorate [J]. Journal of the Electrochemical Society, 1988, 135(1): 235-238. |
[48] | HU T, CHU X F, GAO F, et al. Acetone sensing properties of reduced graphene oxide-CdFe2O4 composites prepared by hydrothermal method [J]. Materials Science in Semiconductor Processing, 2015, 34: 146-153. |
[49] | FAUTEUX D, LUPIEN M D, ROBITAILLE C D. Phase diagram, conductivity, and transference number of PEO-NaI electrolytes [J]. Journal of the Electrochemical Society, 1987, 134(11): 2761-2767. |
[1] | 董钱, 郭立强, 王伟琳, 程广贵. 基于KH550固态电解质的低压氧化铟锌薄膜晶体管[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 186-191. |
[2] | 李伟, 李梅, 路庆华. 离子液体在超疏水银膜表面的电润湿性能[J]. 上海交通大学学报(自然版), 2011, 45(12): 1879-1884. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||