J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (2): 160-167.doi: 10.1007/s12204-021-2384-3
收稿日期:
2020-12-08
出版日期:
2022-03-28
发布日期:
2022-05-02
通讯作者:
YUAN Zhenming* (袁贞明),zmyuan@hznu.edu.cn
LIU Ning1,2 (刘宁), YUAN Zhenming1,3 * (袁贞明)
Received:
2020-12-08
Online:
2022-03-28
Published:
2022-05-02
中图分类号:
. [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 160-167.
LIU Ning (刘宁), YUAN Zhenming* (袁贞明). Spontaneous Language Analysis in Alzheimer’s Disease:Evaluation of Natural Language Processing Technique for Analyzing Lexical Performance[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 160-167.
[23] | JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1 : Long Papers). Vancouver, Canada: Association for Computational Linguistics, 2017: 562-570. |
[1] | MESULAM M, WICKLUND A, JOHNSON N, et al.Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia [J]. Annals of Neurology,2008, 63(6): 709-719. |
[24] | LAI S, XU L, LIU K, et al. Recurrent convolutional neural networks for text classification [C]//29th AAAI Conference on Artificial Intelligence. Austin Texas,USA: AAAI, 2015: 2267-2273. |
[2] | BARTHA L, BENKE T. Acute conduction aphasia:An analysis of 20 cases [J]. Brain and Language, 2003,85(1): 93-108. |
[3] | ROTH C. Boston Diagnostic Aphasia Examination [M]//Encyclopedia of clinical neuropsychology. New York: Springer, 2011: 337-468. |
[4] | KLUMPP P, FRITSCH J, NOETH E. ANN-based Alzheimer’s disease classification from bag of words [C]//Speech Communication; 13th ITG-Symposium.Oldenburg, Germany. VDE, 2018: 1-4. |
[5] | GOSZTOLYA G, VINCZE V, T′OTH L, et al. Identifying Mild Cognitive Impairment and mild Alzheimer’s disease based on spontaneous speech using ASR and linguistic features [J]. Computer Speech & Language,2019, 53: 181-197. |
[6] | JARROLD W, PEINTNER B, WILKINS D, et al.Aided diagnosis of dementia type through computerbased analysis of spontaneous speech [C]//Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality. Baltimore, USA: Association for Computational Linguistics, 2014: 27-37. |
[7] | BUCKS R S, SINGH S, CUERDEN J M, et al. Analysis of spontaneous, conversational speech in dementia of Alzheimer type: Evaluation of an objective technique for analysing lexical performance [J]. Aphasiology,2000, 14(1): 71-91. |
[8] | AHMED S, HAIGH A M F, DE JAGER C A, et al.Connected speech as a marker of disease progression in autopsy-proven Alzheimer’s disease [J]. Brain, 2013,136(12): 3727-3737. |
[9] | ROARK B,MITCHELL M, HOSOM J P, et al. Spoken language derived measures for detecting mild cognitive impairment [J]. IEEE Transactions on Audio, Speech,and Language Processing, 2011, 19(7): 2081-2090. |
[10] | WANG J, WANG Y H. Language disorders in Alzheimer’s disease [J]. Chinese Mental Health Journal,1999, 13(5): 263-265 (in Chinese). |
[11] | HOLMES D, SINGH S. A stylometric analysis of conversational speech of aphasic patients [J]. Literary and Linguistic Computing, 1996, 11(3): 133-140. |
[12] | ILLES J. Neurolinguistic features of spontaneous language production dissociate three forms of neurodegenerative disease: Alzheimer’s, Huntington’s, and Parkinson’s [J]. Brain and Language, 1989, 37(4): 628-642. |
[13] | L′OPEZ-DE-IPI ?NA K, L′OPEZ-DE-IPI ?NA K,ALONSO J B, et al. On the selection of non-invasive methods based on speech analysis oriented to automatic Alzheimer disease diagnosis [J]. Sensors (Basel), 2013, 13(5): 6730-6745. |
[14] | SPERLING R A, AISEN P S, BECKETT L A, et al.Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease [J].Alzheimer’s & Dementia, 2011, 7(3): 280-292. |
[15] | ZENG X Q. Technology implementation of Chinese Jieba segmentation based on Python [J]. China Computer & Communication, 2019, 31(18): 38-39 (in Chinese). |
[16] | ORIMAYE S O, WONG J S M, GOLDEN K J, et al.Predicting probable Alzheimer’s disease using linguistic deficits and biomarkers [J]. BMC Bioinformatics,2017, 18(1): 34. |
[17] | GARRARD P, RENTOUMI V, GESIERICH B, et al.Machine learning approaches to diagnosis and laterality effects in semantic dementia discourse [J]. Cortex,2014, 55: 122-129. |
[18] | DE LIRA J O, ORTIZ K Z, CAMPANHA A C, et al.Microlinguistic aspects of the oral narrative in patients with Alzheimer’s disease [J]. International Psychogeriatrics,2011, 23(3): 404-412. |
[19] | ALAPARTHI S, MISHRA M. Bidirectional Encoder Representations from Transformers (BERT): A sentiment analysis odyssey [EB/OL]. (2020-07-02).https://arxiv.org/abs/2007.01127. |
[20] | ZHANG Z Y, HAN X, LIU Z Y, et al. ERNIE: enhanced language representation with informative entities[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence,Italy: Association for Computational Linguistics,2019: 1441-1451. |
[21] | XUE H. The application of iFLYTEK’s speech technology in mobile phone APP for meeting minutes [J].Computer & Telecommunication, 2017(5): 67-68 (in Chinese). |
[22] | FRASER K C, LUNDHOLM FORS K, KOKKINAKIS D. Multilingual word embeddings for the assessment of narrative speech in mild cognitive impairment [J]. Computer Speech & Language, 2019, 53: 121-139. |
[23] | JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1 : Long Papers). Vancouver, Canada: Association for Computational Linguistics, 2017: 562-570. |
[24] | LAI S, XU L, LIU K, et al. Recurrent convolutional neural networks for text classification [C]//29th AAAI Conference on Artificial Intelligence. Austin Texas,USA: AAAI, 2015: 2267-2273. |
[1] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[2] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80. |
[3] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89. |
[4] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(6): 757-764. |
[5] | MA Guohong (马国红), LI Jian (李健), HE Yinshui (何银水), XIAO Wenbo (肖文波). Weld Geometry Monitoring for Metal Inert Gas Welding Process with Galvanized Steel Plates Using Bayesian Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 239-244. |
[6] | PENG Pai, CHEN Cong , YANG Yongsheng . Particle Swarm Optimization Based on Hybrid Kalman Filter and Particle Filter [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 681-688. |
[7] | QIN Zhichang, XIN Ying, SUN Jianqiao . Multi-Objective Optimal Feedback Controls for Under-Actuated Dynamical System[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 545-552. |
[8] | ZHU Tao (朱涛), CHENG Chunling (程春玲). Joint CTC-Attention End-to-End Speech Recognition with a Triangle Recurrent Neural Network Encoder[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 70-75. |
[9] | ZHANG Jun* (张军), ZHAO Shenwei (赵申卫), WANG Yuanqiang (王远强), ZHU Xinshan (朱新山). Improved Social Emotion Optimization Algorithm for Short-Term Traffic Flow Forecasting Based on Back-Propagation Neural Network[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 209-219. |
[10] | WANG Bo* (王 博), WAN Lei (万 磊), LI Ye (李 晔). Saliency Motivated Pulse Coupled Neural Network for Underwater Laser Image Segmentation[J]. 上海交通大学学报(英文版), 2016, 21(3): 289-296. |
[11] | ZHANG Wen-fen (张雯雰). Simplified Group Search Optimizer Algorithm for Large Scale Global Optimization[J]. 上海交通大学学报(英文版), 2015, 20(1): 38-43. |
[12] | MAO Li1 (毛力), SONG Yi-chun1* (宋益春), LI Yin1 (李引),YANG Hong2 (杨弘), XIAO Wei2 (肖炜). Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm[J]. 上海交通大学学报(英文版), 2015, 20(1): 51-55. |
[13] | SONG SONG Ya (宋亚), SHI Guo (石郭), CHEN Leyi (陈乐懿), HUANG Xinpei (黄鑫沛), XIA Tang. Remaining Useful Life Prediction of Turbofan Engine Using Hybrid Model Based on Autoencoder and Bidirectional Long Short-Term Memory[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 85-94. |
[14] | ZHUO Pengcheng (卓鹏程), ZHU Ying (朱颖), WU Wenxuan (邬雯喧), SHU Junqing (舒俊清), XIA Ta. Real-Time Fault Diagnosis for Gas Turbine Blade Based on Output-Hidden Feedback Elman Neural Network[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 95-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||