Journal of Shanghai Jiao Tong University (Science) ›› 2020, Vol. 25 ›› Issue (3): 352-364.doi: 10.1007/s12204-019-2138-7
LI Han (李晗), PAN Guang (潘光), HUANG Qiaogao (黄桥高), SHI Yao (施瑶)
出版日期:
2020-06-15
发布日期:
2020-05-29
通讯作者:
PAN Guang (潘光)
E-mail:panguang@nwpu.edu.cn
LI Han (李晗), PAN Guang (潘光), HUANG Qiaogao (黄桥高), SHI Yao (施瑶)
Online:
2020-06-15
Published:
2020-05-29
Contact:
PAN Guang (潘光)
E-mail:panguang@nwpu.edu.cn
摘要: Previous studies show that the tip clearance loss limits the improvement of pumpjet propulsor (PJP) performance, and the tip clearance flow field is the most complicated part of PJP flow. In this work, the noncavitation and cavitation hydrodynamic performances of PJP with a tip clearance size of 1mm are obtained by using the detached-eddy simulation (DES). At constant oncoming velocity, cavitation first occurs on the duct and then disappears with the decrease of the advance ratio. The rotor blade cavitation occurs at the low advance ratio and comprises tip clearance cavitation, tip leakage cavitation, and blade sheet cavitation. In the rotor region, the typical vortices include tip separation vortex, tip leakage vortex, trailing edge shedding vortex, and blade root horseshoe vortex. Combined with the pressure distribution, both the Q and λ2 criteria give reliable results of vortex identification. The cavitation causes an expansion of tip leakage vortex in the circumferential direction and decreases the intensities of tip separation vortex in the whole tip clearance area and tip leakage vortex in the cavitation area, and enhances the strength of tip leakage vortex in the downstream non-cavitation area.
中图分类号:
LI Han, PAN Guang, HUANG Qiaogao, SHI Yao. Numerical Prediction of the Pumpjet Propulsor Tip Clearance Vortex Cavitation in Uniform Flow[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 352-364.
LI Han, PAN Guang, HUANG Qiaogao, SHI Yao. Numerical Prediction of the Pumpjet Propulsor Tip Clearance Vortex Cavitation in Uniform Flow[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 352-364.
[1] | PAN G, LU L, SAHOO P K. Numerical simulation of unsteady cavitating flows of pumpjet propulsor [J].Ships and Offshore Structures, 2016, 11(1): 64-74. |
[2] | CHOWJ S, ZILLIAC G G, BRADSHAWP. Mean and turbulence measurements in the near field of a wingtip vortex [J]. AIAA Journal, 1997, 35(10): 1561-1567. |
[3] | HUANG B, ZHAO Y, WANG G Y. Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows [J]. Computers & Fluids, 2014, 92(3): 113-124. |
[4] | YOU D Y, MITTAL R, WANG M, et al. Computational methodology for large-eddy simulation of tipclearance flows [J]. AIAA Journa, 2004, 42(2): 271-279. |
[5] | WANG Y J, ABDEL-MAKSOUD M, WANG K Q, et al. Prediction of tip vortex cavitation inception with low-order panel method [J]. Ocean Engineering, 2016,125: 124-133. |
[6] | GAGGERO S, TANI G, VIVIANI M, et al. A study on the numerical prediction of propellers cavitating tip vortex [J]. Ocean engineering, 2014, 92: 137-161. |
[7] | HUANG R F, JI B, LUO XW, et al. Numerical investigation of cavitation-vortex interaction in a mixed-flow waterjet pump [J]. Journal of Mechanical Science and Technology, 2015, 29(9): 3707-3716. |
[8] | ZHANG D S, SHI L, SHIW D, et al. Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side-perpendicular cavitating vortices in an axial flow pump [J]. International Journal of Multiphase Flow, 2015, 77: 244-259. |
[9] | ZHANG D S, SHI L, ZHAO R J, et al. Study on unsteady tip leakage vortex cavitation in an axial-flow pump using an improved filter-based model [J]. Journal of Mechanical Science and Technology, 2017, 31(2):659-667. |
[10] | SHI L, ZHANG D S, ZHAO R J, et al. Effect of blade tip geometry on tip leakage vortex dynamics and cavitation pattern in axial-flow pump [J]. Science China Technological Sciences, 2017, 60(10): 1480-1493. |
[11] | SURYANARAYANA C, SATYANARAYANA B, RAMJI K, et al. Cavitation studies on axi-symmetric underwater body with pumpjet propulsor in cavitation tunnel [J]. International Journal of Naval Architecture and Ocean Engineering, 2010, 2(4): 185-194. |
[12] | LU L, PAN G, WEI J, et al. Numerical simulation of tip clearance impact on a pumpjet propulsor [J].International Journal of Naval Architecture and Ocean Engineering, 2016, 8(3): 219-227. |
[13] | PEREIRA F, SALVATORE F, FELICE D F, et al. Experimental and numerical investigation of the cavitation pattern on a marine propeller [C]//Proceedings of the 24th Symposium on Naval Hydrodynamics.Fukuoka, Japan, 2002: 236-251. |
[14] | SALVATORE F, STRECKWALL H, TERWISGA T V. Propeller cavitation modelling by CFD: Results from the VIRTUE 2008 Rome Workshop[C]//Proceedings of the First International Symposium on Marine Propulsors. Trondheim, Norway, 2009: 1-10. |
[15] | SUBHAS, SAJI V F, RAMAKRISHNA S, et al. CFD analysis of a propeller flow and cavitation [J]. International Journal of Computer Applications, 2012, 55(16):26-33. |
[16] | MORGUT M, NOBILE E. Influence of the mass transfer model on the numerical prediction of the cavitating flow around a marine propeller [C]//Proceedings of Second International Symposium on Marine Propulsors.Hamburg, Germany, 2011: 1-8. |
[17] | MENTER F R. Zonal two equation k-ω turbulence models for aerodynamic flows [C]//AIAA 24th Fluid Dynamics Conference. Orlando, Florida: AIAA, 1993:2906. |
[18] | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32(8): 1598-1605. |
[19] | WILCOX D C. Turbulence modeling for CFD [M]. La Canada, California: DCW Industries Inc, 1993. |
[20] | SPALART P R, JOUWH, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybird RANS/LES approach [C]//Proceedings of First AFOSR International Conference on DNS/LES. Greyden Press, 1997: 1-10. |
[21] | STRELETS M. Detached eddy simulation of massively separated flows [C]// 39th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV: AIAA, 2001: 0879. |
[22] | SPALART P R, DECK S, SHURML, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities [J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181-195. |
[23] | SPALART P R. Detached-eddy simulation [J]. Annual Review of Fluid Mechanics, 2009, 41: 181-202. |
[24] | BRENNEN C E. Cavitation and bubble dynamics [M].Oxford: Oxford University Press, 2013. |
[25] | PLESSET M S. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16: 277-282. |
[26] | RAYLEIGH L. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34: 94-98. |
[27] | SHI Y, PAN G, HUANG Q G, et al. Numerical simulation of cavitation characteristics for pump-jet propeller[J]. Journal of Physics: Conference Series, 2015,640(1): 012035. |
[28] | STERN F, WILSON R V, COLEMAN H W, et al.Comprehensive approach to verification and validation of CFD simulations. Part 1. Methodology and procedures[J]. Journal of Fluids Engineering, 2001, 123:793-802. |
[29] | WILSON R, SHAO J, STERN F. Discussion: Criticisms of the “correction factor” verification method [J].Journal of Fluids Engineering, 2004, 126: 704-706. |
[30] | STERN F, WILSON R, SHAO J. Quantitative V&V of CFD simulations and certification of CFD codes [J].International Journal for Numerical Methods in Fluids,2006, 50: 1335-1355. |
[31] | CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields [J].Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765-777. |
[32] | ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. Journal of Fluid Mechanics,1999, 387: 353-396. |
[33] | HUNT J C R, WRAYA A, MOIN P. Eddies, streams, and convergence zones in turbulent flows[C]//Proceeding of the Summer Program in Center for Turbulence Research. Stanford (CA): CTR, 1988: 193-208. |
[34] | JEONG J, HUSSAIN F. On the identification of a vortex [J]. Journal of Fluid Mechanics, 1995, 285: 69-94. |
[1] | YU Cheng (郁程), DONG Xiaoqian (董小倩), YANG Chenjun (杨晨俊), LI Wei (李巍), NOBLESSE . Effects of Blade Loading Distribution on the Cavitation and Excitation Forces of a Tunnel Thruster[J]. J Shanghai Jiaotong Univ Sci, 2019, 24(2): 158-167. |
[2] | AN Xinyu *(安新宇), SONG Baowei (宋保维), TIAN Wenlong (田文龙), MA Congcong (马聪聪). Numerical Research of Flow past a Circular Cylinder with Splitter Plate at a Subcritical Reynolds Number Region[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 113-121. |
[3] | RAO Zhiqiang (饶志强), YANG Chenjun* (杨晨俊). Lift Distribution Based Design of Two-Dimensional Sections[J]. 上海交通大学学报(英文版), 2017, 22(3): 265-273. |
[4] | HU Shi-lianga* (胡世良), LU Chuan-jinga,b (鲁传敬), HE You-shenga,b (何友声). Numerical Study on Vortex Induced Vibration of a Flexible Plate Behind Square Cylinder with Various Flow Velocities[J]. 上海交通大学学报(英文版), 2014, 19(4): 488-494. |
[5] | AI Wan-zheng1* (艾万政), ZHOU Qi2 (周琦). Hydraulic Characteristics of Multi-Stage Orifice Plate[J]. 上海交通大学学报(英文版), 2014, 19(3): 361-366. |
[6] | ZHAO Wen-hua (赵文华), YANG Jian-min* (杨建民), HU Zhi-qiang (胡志强), WEI Yue-feng (魏跃峰). Numerical Investigation on the Hydrodynamic Difference Between Internal and External Turret-Moored FLNG[J]. 上海交通大学学报(英文版), 2013, 18(5): 590-597. |
[7] | FENG Pei-yuana* (封培元), MA Ninga,b (马宁), GU Xie-chonga,b (顾解仲). Application of Method of Fundamental Solutions in Solving Potential Flow Problems for Ship Motion Prediction[J]. 上海交通大学学报(英文版), 2013, 18(2): 153-158. |
[8] | LI Xiao-chao1,2* (李小超), WANG Yong-xue3 (王永学), WANG Guo-yu3 (王国玉),JIANG Mei-rong3. Identification of Hydrodynamic Forces on a Flexible Pipe Near Plane Boundary Subjected to Vortex-Induced Vibrations[J]. 上海交通大学学报(英文版), 2013, 18(1): 44-53. |
[9] | YANG Yong (杨勇), MA Jie (马捷), TANG Wen-yong (唐文勇) CHE Chi-dong (车驰东), ZHANG Gui-c. Shafting Alignment Based on Hydrodynamics Simulation Under Larger Rudder Corner Conditions[J]. 上海交通大学学报(英文版), 2012, 17(4): 427-435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||