Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (4): 534-544.doi: 10.1007/s12204-019-2087-1
• • 上一篇
SHEN Kechun (沈克纯), PAN Guang *(潘光)
出版日期:
2019-08-01
发布日期:
2019-07-29
通讯作者:
PAN Guang *(潘光)
E-mail:panguang@nwpu.edu.cn
SHEN Kechun (沈克纯), PAN Guang *(潘光)
Online:
2019-08-01
Published:
2019-07-29
Contact:
PAN Guang *(潘光)
E-mail:panguang@nwpu.edu.cn
摘要: An optimization framework is developed to maximize design pressure of composite cylindrical shell subjected to hydrostatic pressure. Genetic algorithm (GA) integrated with numerical analysis is used in the framework to find optimal winding pattern of the composite cylinders. As a novelty, unlike other studies only considering buckling, in this study, material failure is taken as design constraint in the optimization problem. Sensitivity analyses are performed to study the effects of design variables on the buckling pressure, material failure pressure and design pressure. Comparative study is carried out to analyze the buoyancy factors of the cylindrical shell made of metal alloys and composites. Results reveal that as the shell thickness of the cylinder increases, the material failure pressure instead of the buckling pressure determines the design pressure. It can be concluded that reliable winding pattern designs can be achieved for composite cylinders under hydrostatic pressure when the Tsai-Wu failure criterion is considered.
中图分类号:
SHEN Kechun (沈克纯), PAN Guang *(潘光). Buckling Optimization of Composite Cylinders for Underwater Vehicle Applications Under Tsai-Wu Failure Criterion Constraint[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 534-544.
SHEN Kechun (沈克纯), PAN Guang *(潘光). Buckling Optimization of Composite Cylinders for Underwater Vehicle Applications Under Tsai-Wu Failure Criterion Constraint[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 534-544.
[1] SMITH C S. Design of submersible pressure hulls incomposite materials [J]. Marine Structures, 1991, 4:141-182. [2] ROSS C T F. A conceptual design of an underwatervehicle [J]. Ocean Engineering, 2006, 33: 2087-2104. [3] OUELLETTE P, HOA S V, SANKAR T S. Buckling ofcomposite cylinders under external pressure [J]. PolymerComposites, 1986, 7(5): 363-374. [4] MOON C J, KIM I H, CHOI B H, et al. Bucklingof filament wound composite cylinders subjected tohydrostatic pressure for underwater vehicle applications[J]. Composite Structures, 2010, 92(9): 2241-2251. [5] MAALAWI K Y. Use of material grading for enhancedbuckling design of thin-walled composite rings/longcylinders under external pressure [J]. Composite Structures,2011, 93(2): 351-359. [6] MESSAGE T, PYRZ M, GINESTE B, et al. Optimallaminations of thin underwater composite cylindricalvessels [J]. Composite Structures, 2002, 58(4): 529-537. [7] LOPATIN A V, MOROZOV E V. Buckling of compositecylindrical shells with rigid end disks under hydrostaticpressure [J]. Composite Structures, 2017, 173:136-143. [8] HU H T, CHEN H C. Buckling optimization of laminatedtruncated conical shells subjected to externalhydrostatic compression [J]. Composites Part B: Engineering,2018, 135(4): 95-109. [9] LI Z M, QIAO P Z. Buckling and postbuckling ofanisotropic laminated cylindrical shells under combinedexternal pressure and axial compression in thermalenvironments [J]. Composite Structures, 2015,119: 709-726. [10] CIVALEK ¨O. Buckling analysis of composite panelsand shells with different material properties by discretesingular convolution (DSC) method [J]. CompositeStructures, 2017, 161: 93-110. [11] GEIER B, MEYER-PIENING H R, ZIMMERMANNR. On the influence of laminate stacking on bucklingof composite cylindrical shells subjected to axial compression[J]. Composite Structures, 2002, 55(4): 467-474. [12] ROSS C T F, LITTLE A P F. The buckling of a corrugatedcarbon fibre cylinder under external hydrostaticpressure [J]. Ocean Engineering, 2001, 28(9): 1247-1264. [13] NASIRMANESH A, MOHAMMADI S. Eigenvaluebuckling analysis of cracked functionally graded cylindricalshells in the framework of the extended finiteelement method [J]. Composite Structures, 2016, 159:548-566. [14] DEVECI H A, AYDIN L, ARTEM H S. Buckling optimizationof composite laminates using a hybrid algorithmunder Puck failure criterion constraint [J].Journal of Reinforced Plastics and Composites, 2016,35(16): 1233-1247. [15] LOPEZ R H, LUERSEN M A, CURSI E S. Optimizationof laminated composites considering different failurecriteria [J]. Composites Part B: Engineering, 2009,40(8): 731-740. [16] TAFRESHI A. Delamination buckling and postbucklingin composite cylindrical shells under external pressure[J]. Thin-Walled Structures, 2004, 42: 1379-1404. [17] TAFRESHI A. Delamination buckling and postbucklingin composite cylindrical shells under combined axialcompression and external pressure [J]. CompositeStructures, 2006, 72: 401-418. [18] BLACHUT J. Buckling and first ply failure of compositetoroidal pressure hull [J]. Composites and Structures,2004, 82(23): 1981-1992. [19] HUR S H, SON H J, KWEON J H, et al. Postbucklingof composite cylinders under external hydrostaticpressure [J]. Composite Structures, 2008, 86(1): 114-124. [20] LEE G C, KWEON J H, CHOI J H. Optimization ofcomposite sandwich cylinders for underwater vehicleapplication [J]. Composite Structures, 2013, 96: 691-697. [21] CARVELLI V, PANZERI N, POGGI C. Bucklingstrength of GFRP under-water vehicles [J]. CompositesPart B: Engineering, 2001, 32(2): 89-101. [22] HERN′ANDEZ-MORENO H, DOUCHIN B,COLLOMBET F, et al. Influence of windingpattern on the mechanical behavior of filament woundcomposite cylinders under external pressure [J].Composites Science and Technology 2008, 68(3/4):1015-1024. [23] NAHAS M N. Survey of failure and post-failure theoriesof laminated fiber-renforced composites [J]. Journalof Composites Technology & Research, 1986, 8(4):138-153. [24] SATHEESH R, NAIK N G, GANGULI R. Conservativedesign optimization of laminated composite structuresusing genetic algorithms and multiple failure criteria[J]. Journal of Composite Materials, 2010, 44(3):369-387. [25] G¨URDAL Z, HAFTKA R T, HAJELA P. Design andoptimization of laminated composite materials [M].New York. USA: John Wiley & Sons, Inc, 1999: 19-24. [26] REDDY J N. An introduction to the finite element method [M]. New Delhi, India: McGraW-Hill, 2004. |
[1] | SHI Lianxing (石连星), WANG Zhiheng (王志恒), LI Xiaoyong (李小勇) . Novel Data Placement Algorithm for Distributed Storage System Based on Fault-Tolerant Domain[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 463-470. |
[2] | JIN Yudong (靳宇栋), FENG Jiabo (冯家波), ZHANG Weijun (张伟军). UAV Task Allocation for Hierarchical Multiobjective Optimization in Complex Conditions Using Modified NSGA-III with Segmented Encoding[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 431-445. |
[3] | SUN Xilong, WANG Dengfeng, LI Ruheng, ZHANG Bin . Multi-Objective Optimization for Structure Crashworthiness Based on Kriging Surrogate Model and Simulated Annealing Algorithm[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 727-738. |
[4] | PENG Pai, CHEN Cong , YANG Yongsheng . Particle Swarm Optimization Based on Hybrid Kalman Filter and Particle Filter [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 681-688. |
[5] | ZHANG Xue, CUI Hao, LUO Qianyue, ZHANG Hui . Nonlinear Distributed Model Predictive Control for Multiple Missiles Against Maneuvering Target with a Trajectory Predictor[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 779-789. |
[6] | QIN Zhichang, XIN Ying, SUN Jianqiao . Multi-Objective Optimal Feedback Controls for Under-Actuated Dynamical System[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 545-552. |
[7] | ZHENG Yuqiao, ZHANG Lu, PAN Yongxiang, HE Zhe . Multi-Objective Structural Optimization of a Wind Turbine Tower[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 538-544. |
[8] | LI Zibo, ZENG Fan, ZHAO Zhen, HU Chengliang. Optimized Design for a Combined Die with Two Stress Rings in Cold Forging Considering Thermal-Mechanical Effects[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 304-314. |
[9] | ZHOU Feng, LIU Haotian, LA Jiankai . Fatigue Analysis of Liquefied Petroleum Gas Cylinders for Safety Risk Assessment[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 394-397. |
[10] | ZHOU Min, GAO Mingze, LI Chuang, WANG Liancheng. Cargo Hold Structure Optimization of Small and Medium-Sized Duplex Stainless Steel Chemical Tankers[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 340-351. |
[11] | WANG Wei (王伟), CAI Zhiqiang (蔡志强), ZHAO Jiangbin (赵江滨), SI Shubin (司书宾) . Optimization of Linear Consecutive-k-Out-of-n Systems with Birnbaum Importance Based Ant Colony Optimization Algorithm[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 253-260. |
[12] | WU Xin (武星), PU Juan (蒲娟), XIE Shaorong (谢少荣) . Attacking Strategy of Multiple Unmanned Surface Vehicles with Improved GWO Algorithm Under Control of Unmanned Aerial Vehicles[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 201-207. |
[13] | LIU Chenzhengyi (刘陈正轶), ZHAO Jingwei (赵经纬), LIU Guohang (刘国航), GAO Yuanning (高远宁. D2EA: Depict the Epidemic Picture of COVID-19[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(2): 165-176. |
[14] | LIU Jun (刘俊), DING Ziqi (丁子祈), LU Qi (陆麒), HAN Xianhong (韩先洪) . Mode Tracking Scheme Among Remeshed Models for Structural Optimization[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 706-715. |
[15] | REN Xuanguang (任炫光), PAN Han (潘汉), JING Zhongliang (敬忠良), GAO Lei (高磊). Multi-Image Restoration Method Combined with Total Generalized Variation and lp-Norm Regularizations[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 551-558. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 124
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 486
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||