[1] |
YANG H Z. Mechanism and technology process experiment to MSBR process for nitrogen and phosphorus removals of municipal wastewater [D]. Shanghai,China: School of Environmental Science and Engineering,Tongji University, 2001 (in Chinese).
|
[2] |
LI D, YANG H Z, LIANG X F. Prediction analysis of a wastewater treatment system using a Bayesian network[J]. Environmental Modelling & Software, 2013,40: 140-150.
|
[3] |
HE Q P, QIN S J, WANG J. A new fault diagnosis method using fault directions in Fisher discriminant analysis [J]. AIChE Journal, 2005, 51(2): 555-571.
|
[4] |
BAGGIANI F, MARSILI-LIBELLI S. Real-time fault detection and isolation in biological wastewater treatment plants [J]. Water Science & Technology,2009, 60(11): 2949-2961.
|
[5] |
GARCIA-ALVAREZ D, FUENTE M J, VEGA P, et al. Fault detection and diagnosis using multivariate statistical techniques in a wastewater treatment plant[J]. IFAC Proceedings Volumes, 2009, 42(11): 952-957.
|
[6] |
HAN H G, LI Y, QIAO J F. A fuzzy neural network approach for online fault detection in waste water treatment process [J]. Computers & Electrical Engineering,2014, 40(7): 2216-2226.
|
[7] |
SANCHEZ-FERN′ANDEZ A, FUENTE M J, SAINZPALMERO G I. Fault detection in wastewater treatment plants using distributed PCA methods [C]//2015IEEE 20th Conference on Emerging Technologies &Factory Automation (ETFA). Luxembourg: IEEE,2015: 1-7.
|
[8] |
VARIS O. Belief networks for modelling and assessment of environmental change [J]. Environmetrics,2010, 6(5): 439-444.
|
[9] |
NASH D, WATERS D, BULDU A, et al. Using a conceptual Bayesian network to investigate environmental management of vegetable production in the Lake Taihu region of China [J]. Environmental Modelling &Software, 2013, 46: 170-181.
|
[10] |
NASH D, HANNAH M. Using Monte-Carlo simulations and Bayesian networks to quantify and demonstrate the impact of fertiliser best management practices[J]. Environmental Modelling & Software, 2011,26: 1079-1088.
|
[11] |
ZHAO Y, WEN J, WANG S W. Diagnostic Bayesian networks for diagnosing air handling units faults. Part II: Faults in coils and sensors [J]. Applied Thermal Engineering,2015, 90: 145-157.
|
[12] |
SUCH′ANEK P, MARECKI F, BUCKI R. Selflearning Bayesian networks in diagnosis [J]. Procedia Computer Science, 2014, 35: 1426-1435.
|
[13] |
SAHELY B S G E, BAGLEY D M. Diagnosing upsets in anaerobic wastewater treatment using Bayesian belief networks [J]. Journal of Environmental Engineering,2001, 127(4): 302-310.
|
[14] |
FRANCO C, HEPBURN L A, SMITH D J, et al. A Bayesian belief network to assess rate of changes in coral reef ecosystems [J]. Environmental Modelling &Software, 2016, 80: 132-142.
|
[15] |
LANDUYT D, BROEKX S, D’HONDT R, et al. A review of Bayesian belief networks in ecosystem service modelling [J]. Environmental Modelling & Software,2013, 46: 1-11.
|
[16] |
MOLINA J L, BROMLEY J, GARC′IA-AR′OSTEGUI J L, et al. Integrated water resources management of overexploited hydrogeological systems using objectoriented Bayesian networks [J]. Environmental Modelling & Software, 2010, 25(4): 383-397.
|
[17] |
FORIO M A E, LANDUYT D, BENNETSEN E, et al.Bayesian belief network models to analyse and predict ecological water quality in rivers [J]. Ecological Modelling,2015, 312: 222-238.
|
[18] |
AGUILERA P A, FERN′ANDEZ A, FERN′ANDEZ R, et al. Bayesian networks in environmental modelling[J]. Environmental Modelling & Software, 2011,26(12): 1376-1388.
|
[19] |
CHEN S H, POLLINO C A. Good practice in Bayesian network modelling [J]. Environmental Modelling &Software, 2012, 37: 134-145.
|
[20] |
MYLLYM′AKI P, SILANDER T, TIRRI H, et al.B-course: A web service for Bayesian data analysis[C]//International Conference on Tools with Artificial Intelligence. Dallas, TX, USA: IEEE, 2001: 247-256.
|
[21] |
PRADHAN M, HENRION M, PROVAN G, et al. The sensitivity of belief networks to imprecise probabilities:An experimental investigation [J]. Artificial Intelligence,1996, 85(1/2): 363-397.
|