Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (3): 381-387.doi: 10.1007/s12204-018-1963-4
YU Xingxue (余兴学), ZHANG Yinghua (张映华), ZHANG Xiaomin (张晓敏), JIANG Yu* (蒋渝)
出版日期:
2019-06-01
发布日期:
2019-05-29
通讯作者:
JIANG Yu* (蒋渝)
E-mail: jyscuniversity@163.com
YU Xingxue (余兴学), ZHANG Yinghua (张映华), ZHANG Xiaomin (张晓敏), JIANG Yu* (蒋渝)
Online:
2019-06-01
Published:
2019-05-29
Contact:
JIANG Yu* (蒋渝)
E-mail: jyscuniversity@163.com
摘要: To determine the physical significance of the impact toughness parameters and accurately characterize the low temperature impact toughness of transmission tower material Q420B, the finite element model of Charpy impact test is established on the basis of experiment. The simulation and test results are verified, and the specimen fracture is analyzed by scanning electron microscope. The formation and growth mechanism of the crack are dynamically analyzed. On this basis, energy separation method is used to investigate the effect of low temperature on impact toughness. The results show that the simulation and test results are in good agreement, and the ductile-brittle transition temperature of Q420B is about ?50 ?C. The breaking process of the specimen is divided into the crack formation and propagation. When temperature drops from 20 to ?60 ?C, the crack propagation energy decreases from 51.0 to 11.9 J, the crack formation energy reduces from 39.9 to 15.8 J, and the fracture time of the material drops from 1.8 to 0.6ms.
中图分类号:
YU Xingxue (余兴学), ZHANG Yinghua (张映华), ZHANG Xiaomin (张晓敏), JIANG Yu* (蒋渝). Energy Separation and Explicit Dynamic Analysis of Low Temperature Impact Toughness of Transmission Tower Material Q420B[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 381-387.
YU Xingxue (余兴学), ZHANG Yinghua (张映华), ZHANG Xiaomin (张晓敏), JIANG Yu* (蒋渝). Energy Separation and Explicit Dynamic Analysis of Low Temperature Impact Toughness of Transmission Tower Material Q420B[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 381-387.
[1] | CHEN S, DONG D, HUANG X T, et al. Short-termprediction for transmission lines icing based on BPneural network [C]// 2012 Asia-Pacific Power and EnergyEngineering Conference. Shanghai, China: IEEE,2012: 1-5. |
[2] | MA T N, NIU D X, FU M. Icing forecasting for powertransmission lines based on a wavelet support vectormachine optimized by a quantum fireworks algorithm[J]. Applied Sciences, 2016, 6(2): 1-23. |
[3] | HU X G, CUI Z J, LI Q H, et al. Analysis of collapseof a 330 kilovolt transmission line tower [J]. IndustrialConstruction, 2016, 46(8): 50-55 (in Chinese). |
[4] | RAO N P, KNIGHT G M S, MOHAN S J, et al. Studieson failure of transmission line towers in testing [J].Engineering Structures, 2012, 35: 55-70. |
[5] | ALAZHARI M S. Analysis and testing the over headtransmission steel towers [J]. IOSR Journal of Mechanicaland Civil Engineering, 2014, 11(2): 17-21. |
[6] | LAM H F, YIN T. Dynamic reduction-based structuraldamage detection of transmission towers: Practicalissues and experimental verification [J]. EngineeringStructures, 2011, 33(5): 1459-1478. |
[7] | FARZANEHM, SAVADJIEV K. Statistical analysis offield data for precipitation icing accretion on overheadpower lines [J]. IEEE Transactions on Power Delivery,2005, 20(2): 1080-1087. |
[8] | ALBERMANI F, KITIPORNCHAI S, CHAN R W K.Failure analysis of transmission towers [J]. EngineeringFailure Analysis, 2009, 16(6):1922-1928. |
[9] | ROYLANCE D. Mechanics of materials [M]. NewYork: John Wiley & Sons, 1996. |
[10] | TOMOTA Y, XIA Y, INOUE K. Mechanism of lowtemperature brittle fracture in high nitrogen bearingaustenitic steels [J]. Acta Materialia, 1998, 46(5):1577-1587. |
[11] | PINEAU A. Modeling ductile to brittle fracture transitionin steels-micromechanical and physical challenges[J]. International Journal of Fracture, 2008, 150(1/2):129-156. |
[12] | LIU S Y, LIU D Y, LIU S C. Transgranular fracturein low temperature brittle fracture of high nitrogenaustenitic steel [J]. Journal of Materials Science, 2007,42(17): 7514-7519. |
[13] | T′OTH L, ROSSMANITH H P, SIEWERT T A. Historicalbackground and development of the Charpy test[J]. European Structural Integrity Society, 2002, 30: 3-19. |
[14] | RADON J C. Application of instrumented impact testin polymer testing [J]. Journal of Applied Polymer Science,1978, 22(6): 1569-1581. |
[15] | ROSSOLL A, BERDIN C, PRIOUL C. Determinationof the fracture toughness of a low alloy steel bythe instrumented Charpy impact test [J]. InternationalJournal of Fracture, 2002, 115(3): 205-226. |
[16] | ISO. Metallic materials-tensile testing at low temperature:ISO 15579-2000 [S]. Geneva, Switzerland: ISO,2000. |
[17] | ISO. Metallic materials-Charpy pendulum impact test:ISO 148-1-2009 [S]. Geneva, Switzerland: ISO, 2009. |
[18] | HALLQUIST J O. LS-DYNA3D Theoretical Manual[M]. Livermore, CA: LSTC, 1993. |
[19] | PADHI D, LEWANDOWSKI J J. Effects of test temperatureand grain size on the Charpy impact toughnessand dynamic toughness (KID) of polycrystallineniobium [J]. Metallurgical and Materials TransactionsA, 2003, 34(4): 967-978. |
[20] | RZEPA S, BUCKI T, KONOP′IK P, et al. Influenceof specimen dimensions on ductile-to-brittle transitiontemperature in Charpy impact test [C]// Proceedingsof the 4th International Conference Recent Trends inStructural Materials. Pilsen, Czech Republic: IOP,2017: 012063. |
[21] | ZHANG G M, ZHOU Z J, WANG M, et al.Tensile and Charpy impact properties of an ODSferritic/martensiticsteel 9Cr-1.8W-0.5Ti-0.35Y2O3 [J].Fusion Engineering and Design, 2014, 89(4): 280-283. |
[22] | PILLOT S, PACQUEAU P. An attempt to define aCharpy V-notched mastercurve to fit transition of ferriticsteels [J]. Engineering Fracture Mechanics, 2015,135: 259-273. |
[23] | WAN Q M, WANG R S, SHU G G, et al. Analysismethod of Charpy V-notch impact data before andafter electron beam welding reconstitution [J]. NuclearEngineering and Design, 2011, 241(2): 459-463. |
[1] | CHEN Feier (陈飞儿), ZHAO Qiyuan (赵祺源), CAO Mingming (曹明明), CHEN Jiayi (陈嘉屹), FU Guiyuan (傅桂元). Adaptive Agent-Based Modeling Framework for Collective Decision-Making in Crowd Building Evacuation[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 522-533. |
[2] | JING Mengjie (荆梦杰), CUI Zhixin (崔志鑫), FU Hang (傅航), CHEN Xiaojun (陈晓军). Real-Time Deformation Simulation of Kidney Surgery Based on Virtual Reality[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 290-297. |
[3] | AKAMPUMUZA Obed, WU Jiajun (吴佳骏), QUAN Zhenzhen (权震震), QIN Xiaohong (覃小红). Simulation of Bimodal Fiber Distribution Effect on Transient Accumulation of Particles During Filtration[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 176-185. |
[4] | CHENG Daolai, XU Lei, SUN Xiaojie . Vibration of Axle Box from Wheel Diameter Difference in Vehicle[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 509-518. |
[5] | WEN Xiaofei, ZHOU Ruiping, YUAN Qiang, LEI Junsong . Coupling Mathematical Model of Marine Propulsion Shafting in Steady Operating State[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 463-469. |
[6] | ZHOU Feng (周峰), ZHANG Zixu (张紫旭), WU Chang (武畅), TIAN Xin (田鑫), LIU Haotian (刘昊天. Optimization of Numerical Control Program and Machining Simulation Based on VERICUT[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 763-768. |
[7] | ZHENG Guochen (郑国琛), XU Hangli (许航莉), WU Yingxiong (吴应雄). Experiment on Seismic Performance of Frame-Masonry Horizontal Hybrid Structure Based on Shaking Table Test[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 640-646. |
[8] | ZHENG Yuqiao *(郑玉巧), ZHANG Chengcheng (张铖铖), SU Chun (苏春). Simulation on Remanufacturing Cost by Considering Quality Grade of Returns and Buffer Capacity[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 471-476. |
[9] | WANG Shaohua *(王少华), ZHANG Shixin (张仕新), XU Longyang (徐隆洋), XING Ruxin (邢汝鑫). Optimal Research on Equipment Maintenance Unequal Time-Interval Based on Simulation[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 485-489. |
[10] | LI Meng (李蒙), ZHANG Yong* (张勇), LIU Fengyu (刘峰宇), YIN Chengliang (殷承良). Manual Transmission Gear Rattle Vibration Research Based on Mathematical and Multi-Body Dynamics Co-simulation and Experiment[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 524-533. |
[11] | PANG Guoliang (庞国良), CHEN Chaohe* (陈超核), SHEN Yijun (沈义俊), LIU Fuyong (刘夫永). Comparison Between Different Finite Element Analyses of Unbonded Flexible Pipe via Different Modeling Patterns[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 357-363. |
[12] | XU Zijing (徐梓京), LIN Hui (林辉), DU Dongmei (杜冬梅), WANG Luyi (王路逸), CHEN Jianping . Maneuverability Simulations for Twin-Waterjet Propulsion Vessel[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 19-23. |
[13] | CHEN Xin (陈鑫), LI Ming *(李铭). Delayed Detached Eddy Simulation of Subcritical Flow past Generic Side Mirror[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 107-112. |
[14] | JIN Xudong (金旭东), Lü Tian (吕田), YU Guoyao (余国瑶), LIU Jiawei (刘佳伟), HUANG Xiaoyu. Design and Combustion Characteristic Analysis of Free Piston Stirling Engine External Combustion System[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 50-55. |
[15] | WANG Pei (王昢), LIU Hua (刘华), CHENG Xiang (程翔), ZHAO Wanliang (赵万良), LI Shaolian. Design of Braunbeck Coil for Nuclear Magnetic Resonance Gyro Magnetic Field Excitation[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(6): 740-745. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||