[1] |
GUO C L. Research and design on hot topic detectionand tracking system in internet [D]. Chengdu,China: University of Electronic Science and Technologyof China, 2013 (in Chinese).
|
[2] |
L¨U R F. Language features of Weibo [J]. Journal ofChangchun Education Institute, 2013, 29(14): 42-44(in Chinese).
|
[3] |
LI Y D. Research on hot topic detection methods formicroblog [D]. Nanjing, China: Nanjing Normal University,2013 (in Chinese).
|
[4] |
BEIL F, ESTER M, XU X W. Frequent termbasedtext clustering [C]//Proceedings of the 8th ACMSIGKDD International Conference on Knowledge Discoveryand Data Mining. Edmonton, Alberta, Canada:ACM, 2002: 436-442.
|
[5] |
HU J X, Xu H B, LIU Y, et al. Algorithm of repeatsbasedterm extraction and its application in text clustering[J]. Computer Engineering, 2007, 33(2): 65-67(in Chinese).
|
[6] |
GABRILOVICH E, MARKOVITCH S. Feature generationfor textual information retrieval using worldknowledge [D]. Haifa, Israel: Israel Institute of Technology,2006.
|
[7] |
LIU X L, CAO F Y, LIANG J Y. incremental algorithmfor clustering short texts on news comments [J].Journal of Frontiers of Computer Science and Technology,2018, 12(6): 950-960 (in Chinese).
|
[8] |
HOTHO A, STAAB S, STUMME G. Ontologies improvetext document clustering [C]//Proceedings of3rd IEEE International Conference on Data Mining.Melbourne, FL, USA: IEEE, 2003: 1-4.
|
[9] |
FREY B J, DUECK D. Clustering by passing messagesbetween data points [J]. Science, 2007, 315(5814):972-976.
|
[10] |
SONG L, ZHANG P J. System design of micro-blogpublic opinion based on LDA topic modeling method[J]. Network Security Technology & Application, 2014(4): 5-6 (in Chinese).
|
[11] |
TANG Q L. Short text clustering method based onBTM [D]. Hefei, China: Anhui University, 2014 (inChinese).
|
[12] |
ZHANG Y. A short text similarity calculation methodbased on feature extension using BTM topic mode [D].Hefei, China: Anhui University, 2014 (in Chinese).
|
[13] |
ALLAN J. Introduction to topic detection and tracking[C]//Topic Detection and Tracking. Boston, MA:Springer, 2002: 1-16.
|
[14] |
XU X P. The Methods and characteristics of predictingfuture via twitter [D]. Hangzhou, China: ZhejiangUniversity, 2011 (in Chinese).
|
[15] |
SAKAKI T, OKAZAKI M, MATSUO Y. Earthquakeshakes Twitter users: Real-time event detection by socialsensors [C]//Proceedings of the 19th InternationalConference on World WIDE WEB. Raleigh, NC, USA:ACM, 2010: 851-860.
|
[16] |
PHUVIPADAWAT S, MURATA T. Breakingnews detection and tracking in Twitter [C]//2010IEEE/WIC/ACM International Conference on WebIntelligence and Intelligent Agent Technology. Toronto,ON, Canada: IEEE, 2010: 120-123.
|
[17] |
O’CONNOR B, BALASUBRAMANYAN R, ROUTLEDGEB R, et al. From tweets to polls: Linking textsentiment to public opinion time series [C]//The 4thInternational AAAI Conference on Weblogs and SocialMedia. Washington, DC, USA: AAAI, 2010: 122-129.
|
[18] |
NIE W H, ZENG C, JIA D W. Microblog hot topicsdetection based on heat matrix [J]. Computer Engineering,2017, 43(2): 57-62 (in Chinese).
|
[19] |
JIANG H M. Characteristics of microblog and its influenceon public opinion [J]. Journalism Lover, 2011(5):85-86 (in Chinese).
|
[20] |
YANG L, LIN Y, LIN H F. Micro-blog hot events detectionbased on emotion distribution [J]. Journal ofChinese Information Processing, 2012, 26(1): 84-90(in Chinese).
|
[21] |
CHENG J S, SUN A, HU D N, et al. An Informationdiffusion-based recommendation framework for microblogging[J]. Journal of the Association for InformationSystems, 2011, 12(7): 463-486.
|