Journal of Shanghai Jiao Tong University (Science) ›› 2018, Vol. 23 ›› Issue (5): 671-677.doi: 10.1007/s12204-018-1981-2
YANG Qing (杨轻), YANG Zhong (杨忠), HU Guoxiong (胡国雄), DU Wei (杜威)
出版日期:
2018-10-01
发布日期:
2018-10-07
通讯作者:
YANG Qing (杨轻)
E-mail:yangq171@163.com
YANG Qing (杨轻), YANG Zhong (杨忠), HU Guoxiong (胡国雄), DU Wei (杜威)
Online:
2018-10-01
Published:
2018-10-07
Contact:
YANG Qing (杨轻)
E-mail:yangq171@163.com
摘要: A fusion chemical reaction optimization algorithm based on random molecules (RMCRO) is proposed to meet the special demand of power transmission line inspection. This new algorithm improves the shortcomings of chemical reaction algorithm by merging the idea of repellent-attractant rule and accelerates convergence by using difference algorithm. The molecules in this algorithm avoid obstacles and search optimal path of transmission line inspection by using sensors on multi-rotor unmanned aerial vehicle (UAV). The option of optimal path is based on potential energy of molecules and cost function without repeated parameter adjustment and complicated computation. By compared with an improved particle swarm optimization (IMPSO) in different circumstances of simulation, it can be concluded that the new algorithm presented not only can obtain more optimal path and avoid to trap in local minimum, but also can keep related sensors in a more stable status.
中图分类号:
YANG Qing (杨轻), YANG Zhong (杨忠), HU Guoxiong (胡国雄), DU Wei (杜威). A New Fusion Chemical Reaction Optimization Algorithm Based on Random Molecules for Multi-Rotor UAV Path Planning in Transmission Line Inspection[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 671-677.
YANG Qing (杨轻), YANG Zhong (杨忠), HU Guoxiong (胡国雄), DU Wei (杜威). A New Fusion Chemical Reaction Optimization Algorithm Based on Random Molecules for Multi-Rotor UAV Path Planning in Transmission Line Inspection[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 671-677.
[1] | LIN Y, LI B, WANG D, et al. Application of multirotorUAV patrol system in UHV power grid construction[J]. Electric Power, 2017, 50(12): 141-147 (inChinese). |
[2] | TANG J, YANG J, GONG X. Multi-rotor UAV aerialsurvey technology for power grid inspection: researchand application [J]. Bulletin of Surveying and Mapping,2017, (5): 67-70 (in Chinese). |
[3] | AGIRREBEITIA J, AVIL′ES R, DE BUSTOS I F, etal. A new APF strategy for path planning in environmentswith obstacles [J]. Mechanism and MachineTheory, 2005, 40(6): 645-658. |
[4] | AHMED S U, MALIK U A, IQBAL M, et al. A guidedautowave PCNN for improved real time path planning[C]//Proceedings of the 2013 International Joint Conferenceon Neural Networks. Dallas, TX, USA: IEEE,2013: 290-296. |
[5] | AKTER S, LEE D J, LIM S T, et al. Grid basedpath planning using CNN and artificial potential fieldmethod [J]. Applied Mechanics and Materials, 2013,392: 830-836. |
[6] | HUANG H C, TSAI C C. Global path planning for autonomousrobot navigation using hybrid metaheuristicGA-PSO algorithm [C]//Proceeding of SICE AnnualConference. Tokyo, Japan: IEEE, 2011: 1338-1343. |
[7] | DAS P K, BEHERA H S, TRIPATHY H K, et al. A hybridimproved PSO-DV algorithm for multi-robot pathplanning in a clutter environment [J]. Neurocomputing,2016, 207: 735-753. |
[8] | PURCARU C, PRECUP R E, IERCAN D, et al. HybridPSO-GSA robot path planning algorithm in staticenvironments with danger zones [C]//Proceedings ofthe 17th International Conference on System Theory,Control and Computing. Sinaia, Romania: IEEE, 2013:434-439. |
[9] | SHAKIBA R, NAJAFIPOUR M R, SALEHI M E.An improved PSO-based path planning algorithm forhumanoid soccer playing robots [C]//Proceedings ofthe 3rd Joint Conference of AI and Robotics and 5thRobocup Iran Open International Symposium. Tehran,Iran: IEEE, 2013: 1-6. |
[10] | GENG N, SUN X, GONG D, et al. Solving robot pathplanning in an environment with terrains based on intervalmulti-objective PSO [J]. International Journalof Robotics and Automation, 2016, 31(2): 100-110. |
[11] | CH?AARI I, KOUB?AA A, BENNACEUR H, et al.SmartPATH: A hybrid ACO-GA algorithm for robotpath planning [C]//Proceedings of the 2012 IEEECongress on Evolutionary Computation. Brisbane,QLD, Australia: IEEE, 2012: 1-8. |
[12] | OLEIWI B K, ROTH H, KAZEM B I. A hybrid approachbased on ACO and GA for multi objective mobilerobot path planning [J]. Applied Mechanics andMaterials, 2014, 527: 203-212. |
[13] | CHEN X, KONG Y, FANG X, et al. A fast two-stageACO algorithm for robotic path planning [J]. NeuralComputing and Applications, 2013, 22(2): 313-319. |
[14] | MAZINAN A H, SAGHARICHIHA F. A novel hybridPSO-ACO approach with its application to SPP [J].Evolving Systems, 2015, 6(4): 293-302. |
[15] | GIGRAS Y, CHOUDHARY K, GUPTA K, et al.A hybrid ACO-PSO technique for path planning[C]//Proceedings of the 2nd International Conferenceon Computing for Sustainable Global Development,New Delhi, India: IEEE, 2015: 1616-1621. |
[16] | LAM A Y S, LI V O K. Chemical-reaction-inspiredmetaheuristic for optimization [J]. IEEE Transactionson Evolutionary Computation, 2010, 14(3): 381-399. |
[17] | MOHAJER B, KIANI K, SAMIEI E, et al. A new onlinerandom particles optimization algorithm for mobilerobot path planning in dynamic environments [J].Mathematical Problems in Engineering, 2013, (2): 1-9. |
[1] | JIN Yudong (靳宇栋), FENG Jiabo (冯家波), ZHANG Weijun (张伟军). UAV Task Allocation for Hierarchical Multiobjective Optimization in Complex Conditions Using Modified NSGA-III with Segmented Encoding[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 431-445. |
[2] | WU Xin (武星), PU Juan (蒲娟), XIE Shaorong (谢少荣) . Attacking Strategy of Multiple Unmanned Surface Vehicles with Improved GWO Algorithm Under Control of Unmanned Aerial Vehicles[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 201-207. |
[3] | WU Xing (武星), LIU Yuan (刘远), XIE Shaorong (谢少荣), GUO Yike (郭毅可). Collaborative Defense with Multiple USVs and UAVs Based on Swarm Intelligence[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 51-56. |
[4] | CHEN Yaojie* (陈姚节), XIANG Shanshan (项珊珊), CHEN Feixiang (陈飞翔). Research on a Task Planning Method for Multi-Ship Cooperative Driving[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 233-242. |
[5] | CHEN Zirong *(陈仔荣), LU Yafei (鲁亚飞), HOU Zhongxi (侯中喜), WANG Junwei (王俊伟). UAV's Coverage Search Planning Algorithm Based on Action Combinations[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 48-57. |
[6] | SUN Ling (孙玲). A Real-Time Collision-Free Path Planning of a Rust Removal Robot Using an Improved Neural Network[J]. 上海交通大学学报(英文版), 2017, 22(5): 633-640. |
[7] | ZHANG Yang* (张洋), L ¨U Qiang (吕强), LIN Huican (林辉灿), MA Jianye (马建业). Research on Visual Autonomous Navigation Indoor for Unmanned Aerial Vehicle[J]. 上海交通大学学报(英文版), 2017, 22(2): 252-256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||