上海交通大学学报(英文版) ›› 2017, Vol. 22 ›› Issue (6): 733-741.doi: 10.1007/s12204-017-1894-5
HU Jing* (胡静), LUO Yiyuan (罗宜元)
出版日期:
2017-12-01
发布日期:
2017-12-03
通讯作者:
HU Jing (胡静)
E-mail:hujing@sdju.edu.cn
HU Jing* (胡静), LUO Yiyuan (罗宜元)
Online:
2017-12-01
Published:
2017-12-03
Contact:
HU Jing (胡静)
E-mail:hujing@sdju.edu.cn
摘要: An integrated fuzzy min-max neural network (IFMMNN) is developed to avoid the classification result influenced by the input sequence of training samples, and the learning algorithm can be used as pure clustering, pure classification, or a hybrid clustering classification. Three experiments are designed to realize the aim. The serial input of samples is changed to parallel input, and the fuzzy membership function is substituted by similarity matrix. The experimental results show its superiority in contrast with the original method proposed by Simpson.
中图分类号:
HU Jing* (胡静), LUO Yiyuan (罗宜元). Integration of Learning Algorithm on Fuzzy Min-Max Neural Networks[J]. 上海交通大学学报(英文版), 2017, 22(6): 733-741.
HU Jing* (胡静), LUO Yiyuan (罗宜元). Integration of Learning Algorithm on Fuzzy Min-Max Neural Networks[J]. Journal of Shanghai Jiao Tong University (Science), 2017, 22(6): 733-741.
[1] | SINGH H, ABDULLAH M Z, QUTIESHAT A. Detectionand classification of electrical supply voltagequality to electrical motors using the fuzzy-min-maxneural network [C]//IEEE International Electric Machines& Drives Conference (IEMDC). Niagara Falls:IEEE, 2011: 961-965. |
[2] | GOSWAMI B, BHANDARI G, GOSWAMI S. Fuzzymin-max neural network for satellite infrared imageclustering [C]//Third International Conferenceon Emerging Applications of Information Technology(EAIT). Kolkata: IEEE, 2012: 239-242. |
[3] | KOTHARI R, JAIN V. Learning from labeled and unlabeleddata using minimal number of queries [J]. IEEETrans on Neural Networks, 2003, 14 (6): 1096-1105. |
[4] | SIMPSON P K. Fuzzy min-max neural networks[C]//IEEE International Joint Conference on NeuralNetworks. [s.l.]: IEEE, 1991: 1658-1669. |
[5] | SIMPSON P K. Fuzzy min-max neural networks. Part1. Classification [J]. IEEE Transactions on Neural Networks,992, 3(5): 766-786. |
[6] | SIMPSON P K. Fuzzy min-max neural networks. Part2. Clustering [J]. IEEE Transactions on Fuzzy Systems,1993, 1(1): 32-45. |
[7] | SHINDE S V, KULKARNI U V. Mining classificationrules from fuzzy min-max neural network [C]//2014International Conference on Computing, Communicationand Networking Technologies (ICCCNT). Hefei:IEEE, 2014: 1-7. |
[8] | DAVTALAB R, DEZFOULIAN M H, MANSOORIZADEHM. Multi-level fuzzy min-max neuralnetwork classifier [J]. IEEE Transactions on NeuralNetworks and Learning Systems, 2013, 3(25): 470-482. |
[9] | GOSWAMI B, BHANDARI G, GOSWAMI S. Fuzzymin-max neural network for satellite infrared imageclustering [C]//2012 Third International Conferenceon Emerging Applications of Information Technology(EAIT). Kolkata: IEEE, 2012: 239-242. |
[10] | NANDEDKAR A V, BISWAS P K. A granular reflexfuzzy min-max neural network for classification [J].IEEE Transactions on Neural Networks, 2009, 7(20):1117- 1134. |
[11] | CHEN X, JIN D M, LI Z J. Recursive training formulti-resolution fuzzy min-max neural network classifier[C]//Proceedings of 6th International Conferenceon Solid-State and Integrated-Circuit Technology.Shanghai: IEEE, 2001: 131-134. |
[12] | LIU J H, FENG J. Diagnosis for oil pipeline based onfuzzy min-max neural network [J]. Journal of NanjingUniversity of Aeronautics & Astronautics, 2011, 43(5):199-202 (in Chinese). |
[13] | HATTORI K, TAKAHASHI M. A new edited knearestneighbor rule in the pattern classification problem[J]. Pattern Recognition, 2000, 33(3): 521-528. |
[14] | JOHNSON S C. Hierarchical clustering schemes [J].Psychometrika, 1967, 32(3): 241-254. |
[15] | BLAKE C, KEOGH E, MERZ C J. UCI repositoryof machine learning databases [EB/OL]. (2016-10-26).http://www.ics.uci.edu/~mlearn/MLRepository.htm1.1998?? |
[1] | HUANG Ganyu (黄甘雨), PAN Qiaoyi (潘荍仪), ZHAO Shuangying (赵双楹), GAO Yucen (高宇岑), GAO. Prediction of COVID-19 Outbreak in China and Optimal Return Date for University Students Based on Propagation Dynamics[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(2): 140-146. |
[2] | GU Yingkui *(古莹奎), SHEN Yanjun (沈延军), YU Dongping (余东平). Degradation Reliability Analysis Based on TOPSIS Model Selection Method[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 351-356. |
[3] | LI He (李贺), HUANG Hongzhong (黄洪钟), YIN Yichao (殷毅超), ZHANG Kaiyan (张凯延), HUANG P. Product Quality Evaluation Method Based on Product Gene Theory[J]. sa, 2018, 23(3): 438-. |
[4] | REN Wei (任 维), LIU Hong* (刘 洪). Effects of Compressibility and Knudsen Number on the Aero Optics in Hypersonic Flow Fields[J]. 上海交通大学学报(英文版), 2016, 21(3): 270-279. |
[5] | DUAN Fengfeng (段峰峰). Consistent Depth Maps Estimation from Binocular Stereo Video Sequence[J]. 上海交通大学学报(英文版), 2016, 21(2): 184-191. |
[6] | SU Bai-hua1 (苏柏桦), WANG Ying-lin2* (王英林). Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Regression Applied to Semantic Textual Similarity[J]. 上海交通大学学报(英文版), 2015, 20(2): 143-148. |
[7] | XIAO Ji-nian1 (肖佶年), JIA Yun-zhe1 (贾蕴哲), FU Er-dong1 (付尔东),HUANG Zheng1* (黄征), L. Audio Authenticity: Duplicated Audio Segment Detection in Waveform Audio File[J]. 上海交通大学学报(英文版), 2014, 19(4): 392-397. |
[8] | GUO Tian-li (郭甜莉), LIU Qie-gen (刘且根), LUO Jian-hua* (骆建华). Filter Bank Based Nonlocal Means for Denoising Magnetic Resonance Images[J]. 上海交通大学学报(英文版), 2014, 19(1): 72-78. |
[9] | MA Guo-hong* (马国红), WANG Cong (王 聪), LIU Pei (刘 沛), ZHU Shu-lin (朱书林). Sequential Similarity Detection Algorithm Based on Image Edge Feature[J]. 上海交通大学学报(英文版), 2014, 19(1): 79-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||