[1] Rai B P. Cu2O solar cells: A review [J]. Solar Cells, 1988, 25(3): 265-272. [2] Akimoto K, Ishizuka S, Yanagita M, et al. Thin film deposition of Cu2O and application for solar cells[J]. Solar Energy, 2006, 80(6): 715-722. [3] Ogwu A A, Darma T H, Bouquerel E. Electrical resistivity of copper oxide thin films prepared by reactive magnetron sputtering [J]. Journal of Achievements in Materials and Manufacturing Engineering, 2007, 24(1): 172-177. [4] Mittiga A, Salza E, Sarto F, et al. Heterojunction solar cell with 2% efficiency based on a Cu2O substrate [J]. Applied Physics Letters, 2006, 88(16): 163502-163504. [5] Chen A P, Long H, Li X C, et al. Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition [J]. Vacuum, 2009,83(6): 927-930. [6] Ogwu A A, Bouquerel E, Ademosu O, et al. The influence of rf powder and oxygen flow rate during deposition on the optical transmittance of copper oxide thin films prepared by reactive magnetron sputtering [J]. Journal of Physicsl D: Applied Physics, 2005, 38(2): 266-271. [7] Michael N. Defects in Cu2O, CuAlO2 and SrCu2O2 transparent conducting oxides [J]. Thin Solid Films, 2008, 516(22): 8130-8135. [8] Raebiger H, Lany S, Zunger A. Origins of the ptype nature and cation deficiency in Cu2O and related materials [J]. Physical Review B, 2007, 76(4): 045209-045213. [9] Tsur Y, Riess I. Self-compensation in semiconductors[J]. Physical Review B, 1999, 60(11): 8138-8146. [10] Mittiga A, Biccari F, Malerba C. Intrinsic defects and metastability effects in Cu2O [J]. Thin Solid Films,2009, 517(7): 2469-2472. [11] Li B B, Lin L, Shen H L, et al. Effect of N doping on hole density of Cu2O: N films prepared by the reactive magnetron sputtering method [J]. The European Physical Journal Applied Physics, 2012, 58(2): 1-4. [12] Minami T, Miyata T, Ihara K, et al. Effect of ZnO film deposition methods on the photovoltaic properties of ZnO-Cu2O heterojunction devices [J]. Thin Solid Films, 2006, 494(1-2): 47-52. [13] Jeong S S, Mittiga A, Salza E, et al. Electrodeposited ZnO/Cu2O heterojunction solar cells [J]. Electrochimica Acta, 2008, 53(5): 2226-2231. [14] Ishizuka S, Suzuki K, Okamoto Y, et al. Polycrystalline n-ZnO/p-Cu2O heterojunctions grown by RFmagnetron sputtering [J]. Physica Status Solidi (C), 2004, 1(4): 1067-1070. [15] Al-Kukaili M F. Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O) [J]. Vacuum, 2008, 82(6): 623-629. [16] Yang W Y, Kim W G, Rhee S W, Radio frequency sputter deposition of single phase cuprous oxide using Cu2O as a target material and its resistive switching properties [J]. Thin Solid Films, 2008, 517(2): 967-971. [17] Chen A P, Long H, Li X C, et al. Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition [J]. Vacuum, 2009,83(6): 927-930. [18] Liu Y L, Liu Y C, Mu R, et al. The structural and optical properties of Cu2O films electrodeposited on different substrates [J]. Semiconductor Science and Technology,2005, 20(1): 44-48. [19] Li B S, Akimoto K, Shen A. Growth of Cu2O thin films with high hole mobility by introducing a low-temperature buffer layer [J]. Journal of Crystal Growth, 2009, 311(4): 1102-1105. [20] Zhu H L, Zhang J Y, Li C Z, et al. Cu2O thin films deposited by reactive direct current magnetron sputtering [J]. Thin Solid Films, 2009, 517(19): 5700-5704. [21] Losev A, Rostov K, Tyeliev G. Electron beam induced reduction of CuO in the presence of a surface carbonaceous layer: An XPS/HREELS study [J]. Surface Science, 1989, 213(2-3): 564-579. [22] Takahiro I, Kunisuke M. Growth process of CuO(1 1 1) and Cu2O(0 0 1) thin films on MgO(0 0 1) substrate under metal-mode condition by reactive dcmagnetron sputtering [J]. Vacuum, 2007, 81(9): 1068-1076. [23] Reddy A S, Rao G V, Uthanna S, et al. Structural and optical studies on dc reactive magnetron sputtered Cu2O films [J]. Materials Letters, 2006, 60(13-14): 1617-1621. [24] Necmi S, Tulay S, Seyda H, et al. Annealing effects on the properties of copper oxide thin films prepared by chemical deposition [J]. Semiconductor Science and Technology, 2005, 20(5): 398-402. [25] Pierson J F, Thobor-Keck A, Billard A. Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering [J]. Applied Surface Science, 2003, 210(3-4): 359-367. |