1 van Arem B, Kirby H R, van der Vlist M J M, et al. Recent advances and applications in the field of short-term traffic forecasting [J]. International Journal of Forecasting, 1997, 13(1): 1-12.
2 Vlahogianni E I, Golias J C, Karlaftis M G. Short-term forecasting: Overview of objectives and methods [J]. Transport Reviews, 2004, 24(5): 533-557.
3 Chrobok R, Kaumann O, Wahle J, et al. Different methods of traffic forecast based on real data [J]. European Journal of Operational Research, 2004, 155(3): 558-568.
4 Lam W H K, Tang Y F, Chan K S, et al. Short-term hourly traffic forecasts using Hong Kong annual traffic census [J]. Transportation, 2006, 33(3): 291-310.
5 Lam W H K, Tang Y F, Tam M L. Comparison of two non-parametric models for daily traffic forecasting in Hong Kong [J]. Journal of Forecasting, 2006, 25(3): 173-192.
6 Lam W H K, Xu J. Estimation of AADT from short period counts in Hong Kong: A comparison between neural network method and regression analysis [J]. Journal of Advanced Transportation, 2000, 34(2): 249-268.
7 Wu C H, Ho J M, Lee D T. Travel-time prediction with support vector regression [J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(4): 276-281.
8 Yin H, Wong S C, Xu J, et al. Urban traffic flow prediction using a fuzzy-neural approach [J]. Transportation Research: Part C, 2002, 10(2): 85-98.
9 Smith B L, Williams B M, Oswald R K. Comparison of parametric and nonparametric models for traffic flow forecasting [J]. Transportation Research: Part C, 2002, 10(4): 303-321.
10 Smith B L, Demetsky M J. Traffic flow forecasting: Comparison of modeling approaches [J]. Journal of Transportation Engineering, 1997, 123(4): 261-266.
11 Lee S, Lee Y I, Cho B. Short-term travel speed prediction models in car navigation systems [J]. Journal of Advanced Transportation, 2006, 40(2): 123-139.
12 Ahmed M S, Cook A R. Analysis of freeway traffic time-series data by using Box-Jenkins techniques [J]. Transportation Research Record, 1979, 722: 1-9.
13 Park D, Rilett L R. Forecasting multiple-period freeway link travel times using modular neural networks [J]. Transportation Research Record, 1998, 1617: 163-170.
14 Ding A, Zhao X, Jiao L. Traffic flow time series prediction based on statistics learning theory [C]// Proceedings of the 5th IEEE International Conference on Intelligent Transportation Systems. Singapore: Center for Transportation Research of National University of Singapore, 2002: 727-730.
15 Vanajakshi L, Rilett L R. A comparison of the performance of artificial neural network and support vector machines for the prediction of traffic speed [C]// Proceedings of the Intelligent Vehicles Symposium. Parma, Italy: University of Parma, 2004: 194-199.
16 Suykens J A K, Vandewalle J, de Moor B. Optimal control by least squares support vector machines [J]. Neural Network, 1998, 14(1): 23-35.
17 Suykens J A K, van Gestel T, de Brabanter J, et al. Least squares support vector machines [M]. Singapore: World Scientific, 2002.
18 van Gestel T, Suykens J A K, Baestaens D, et al. Financial time series prediction using least squares support vector machines within the evidence framework [J]. IEEE Transactions on Neural Networks, 2001, 12(4): 809-821.
19 Turochy R E. Enhancing short-term traffic forecasting with traffic condition information [J]. Journal of Transportation Engineering, 2006, 132(6): 469-474.
20 Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [J]. Advances in Neural Information Processing Systems, 1996, 9: 155-161.
21 Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithm for radial basis function networks [J]. IEEE Transactions on Neural Networks, 1991, 2(2): 302-309.
22 Vapnik V. Statistical learning theory [M]. New York: John Wiley, 1998.
|