1 van Arem B, Kirby H R, van der Vlist M J M, et al. Recent advancesand applications in the field of short-term traffic forecasting [J]. International Journal of Forecasting, 1997, 13(1):1-12.2 Vlahogianni E I, Golias J C, Karlaftis M G. Short-term forecasting:Overview of objectives and methods [J]. Transport Reviews,2004, 24(5): 533-557.3 Chrobok R, Kaumann O, Wahle J, et al. Different methods of trafficforecast based on real data [J]. European Journal ofOperational Research, 2004, 155(3): 558-568.4 Lam W H K, Tang Y F, Chan K S, et al. Short-term hourly trafficforecasts using Hong Kong annual traffic census [J]. Transportation, 2006, 33(3): 291-310.5 Lam W H K, Tang Y F, Tam M L. Comparison of two non-parametricmodels for daily traffic forecasting in Hong Kong [J]. Journalof Forecasting, 2006, 25(3): 173-192.6 Lam W H K, Xu J. Estimation of AADT from short period counts in HongKong: A comparison between neural network method and regressionanalysis [J]. Journal of Advanced Transportation, 2000, 34(2): 249-268.7 Wu C H, Ho J M, Lee D T. Travel-time prediction with support vectorregression [J]. IEEE Transactions on IntelligentTransportation Systems, 2004, 5(4): 276-281.8 Yin H, Wong S C, Xu J, et al. Urban traffic flow prediction using afuzzy-neural approach [J]. Transportation Research: Part C,2002, 10(2): 85-98.9 Smith B L, Williams B M, Oswald R K. Comparison of parametric andnonparametric models for traffic flow forecasting [J]. Transportation Research: Part C, 2002, 10(4): 303-321.10 Smith B L, Demetsky M J. Traffic flow forecasting: Comparison ofmodeling approaches [J]. Journal of TransportationEngineering, 1997, 123(4): 261-266.11 Lee S, Lee Y I, Cho B. Short-term travel speed prediction models incar navigation systems [J]. Journal of AdvancedTransportation, 2006, 40(2): 123-139.12 Ahmed M S, Cook A R. Analysis of freeway traffic time-series data byusing Box-Jenkins techniques [J]. Transportation ResearchRecord, 1979, 722: 1-9.13 Park D, Rilett L R. Forecasting multiple-period freeway link traveltimes using modular neural networks [J]. TransportationResearch Record, 1998, 1617: 163-170.14 Ding A, Zhao X, Jiao L. Traffic flow time series prediction based onstatistics learning theory [C]// Proceedings of the 5th IEEEInternational Conference on Intelligent Transportation Systems.Singapore: Center for Transportation Research of National Universityof Singapore, 2002: 727-730.15 Vanajakshi L, Rilett L R. A comparison of the performance ofartificial neural network and support vector machines for theprediction of traffic speed [C]// Proceedings of theIntelligent Vehicles Symposium. Parma, Italy: University of Parma,2004: 194-199.16 Suykens J A K, Vandewalle J, de Moor B. Optimal control by leastsquares support vector machines [J]. Neural Network, 1998, 14(1): 23-35.17 Suykens J A K, van Gestel T, de Brabanter J, et al. Least squaressupport vector machines [M]. Singapore: World Scientific, 2002.18 van Gestel T, Suykens J A K, Baestaens D, et al. Financial timeseries prediction using least squares support vector machines withinthe evidence framework [J]. IEEE Transactions on NeuralNetworks, 2001, 12(4): 809-821.19 Turochy R E. Enhancing short-term traffic forecasting with trafficcondition information [J]. Journal of TransportationEngineering, 2006, 132(6): 469-474.20 Drucker H, Burges C J C, Kaufman L, et al. Support vector regressionmachines [J]. Advances in Neural Information ProcessingSystems, 1996, 9: 155-161.21 Chen S, Cowan C F N, Grant P M. Orthogonal least squares learningalgorithm for radial basis function networks [J]. IEEETransactions on Neural Networks, 1991, 2(2): 302-309.22 Vapnik V. Statistical learning theory [M]. New York: John Wiley,1998. |