J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (4): 517-.doi: 10.1007/s12204-022-2554-y
于佳琪1,王殊轶1,王浴屺1,谢华2,吴张檑1,付小妮1,马邦峰1
收稿日期:
2021-12-20
接受日期:
2022-04-03
出版日期:
2023-07-28
发布日期:
2023-07-31
YU Jiaqi1 (于佳琪),WANG Shuyi1* (王殊轶),WANG Yuqil (王浴屺),XIE Hua2 (谢华), WU Zhangleil (吴张檑),FU Xiaonil (付小妮),MA Bangfeng1 (马邦峰)
Received:
2021-12-20
Accepted:
2022-04-03
Online:
2023-07-28
Published:
2023-07-31
摘要: 本研究的目的是开发一种基于增强现实(AR)的新型经皮肾穿刺训练可视化工具,并比较模型中该AR系统与超声引导徒手导航的针头放置性能。本研究使用Unity3D和Visual Studio软件开发了一种基于头戴式显示器的AR导航系统,可以使术前入针路径和复杂的解剖结构影像实时覆盖到穿刺模型上。我们通过Qualisys 运动捕捉系统来跟踪静止模型和经皮器械运动的空间位置。为了评估跟踪的准确性,15名参与者(7名男性和8名女性)使用AR导航(穿刺次数n = 75)和超声引导下的徒手导航(n = 75)方式进行了单次置针操作。针尖与虚拟目标之间的欧氏距离为置针误差,该距离使用MicronTracker测量。与超声引导徒手穿刺相比,AR辅助穿刺方法具有更好的置针效率。超声引导的置针误差高于AR导航的误差(5.54 mm ± 2.59 mm,4.34 mm ± 2.10 mm,p < 0.05)。同时,超声引导的置针时间也高于AR导航的时间 (19.08 s ±3.59 s, 15.14 s ± 2.72 s, respectively, p < 0.000 1)。结果表明,本研究开发的AR训练系统提升了置针效率并解决了操作者的手眼协同问题。在提高经皮肾穿刺训练的效率和有效性方面,该系统展现出一定的潜力。
中图分类号:
于佳琪1,王殊轶1,王浴屺1,谢华2,吴张檑1,付小妮1,马邦峰1. 基于增强现实技术的新型经皮肾穿刺训练可视化工具[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 517-.
YU Jiaqi1 (于佳琪),WANG Shuyi1* (王殊轶),WANG Yuqil (王浴屺),XIE Hua2 (谢华), WU Zhangleil (吴张檑),FU Xiaonil (付小妮),MA Bangfeng1 (马邦峰). Novel Visualization Tool for Percutaneous Renal Puncture Training Using Augmented Reality Technology[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 517-.
[1] NG C F. Training in percutaneous nephrolithotomy:The learning curve and options [J]. Arab Journal ofUrology, 2014, 12(1): 54-57. [2] STERN J, ZELTSER I S, PEARLE M S. Percutaneous renal access simulators [J]. Journal of Endourology, 2007, 21(3): 270-273. [3] MISHRA S, SABNIS R B, DESAI M. Staghorn morphometry: A new tool for clinical classification andprediction model for percutaneous nephrolithotomymonotherapy [J]. Journal of Endourology, 2012, 26(1):6-14. [4] ALLEN D, O’BRIEN T, TIPTAFT R, et al. Definingthe learning curve for percutaneous nephrolithotomy[J]. Journal of Endourology, 2005, 19(3): 279-282. [5] DE LA ROSETTE J, ASSIMOS D, DESAI M, etal. The Clinical Research Office of the EndourologicalSociety Percutaneous Nephrolithotomy Global Study:Indications, complications, and outcomes in 5 803 patients [J]. Journal of Endourology, 2011, 25(1): 11-17. [6] YOON J W, CHEN R E, KIM E J, et al. Augmentedreality for the surgeon: Systematic review [J]. The International Journal of Medical Robotics and ComputerAssisted Surgery, 2018, 14(4): e1914. [7] JUTZI S, IMKAMP F, KUCZYK M A, et al. New exvivo organ model for percutaneous renal surgery usinga laparoendoscopic training box: The sandwich model[J]. World Journal of Urology, 2014, 32(3): 783-789. [8] KALLIDONIS P, KYRIAZIS I, VASILAS M, et al.Modular training for percutaneous nephrolithotripsy:The safe way to go [J]. Arab Journal of Urology, 2015,13(4): 270-276. [9] VIJAYAKUMAR M, BALAJI S, SINGH A, et al. Anovel biological model for training in percutaneous renal access [J]. Arab Journal of Urology, 2019, 17(4):292-297. [10] VENEZIANO D, SMITH A, REIHSEN T, et al. TheSimPORTAL fluoro-less C-arm trainer: An innovativedevice for percutaneous kidney access [J]. Journal ofEndourology, 2015, 29(2): 240-245. [11] TURNEY B W. A new model with an anatomicallyaccurate human renal collecting system for training influoroscopy-guided percutaneous nephrolithotomy access [J]. Journal of Endourology, 2014, 28(3): 360-363. [12] KLEIN J T, RASSWEILER J, RASSWEILERSEYFRIED M C. Validation of a novel cost effective easy to produce and durable in vitro model forkidney-puncture and percutaneous nephrolitholapaxysimulation [J]. Journal of Endourology, 2018, 32(9):871-876. [13] MISHRA S, KURIEN A, PATEL R, et al. Validation ofvirtual reality simulation for percutaneous renal accesstraining [J]. Journal of Endourology, 2010, 24(4): 635-640. [14] RANGARAJAN K, DAVIS H, PUCHER P H. Systematic review of virtual haptics in surgical simulation: Avalid educational tool? [J]. Journal of Surgical Education, 2020, 77(2): 337-347. [15] MISRA S, RAMESH K T, OKAMURA A M. Modelingof tool-tissue interactions for computer-based surgicalsimulation: A literature review [J]. Presence, 2008,17(5): 463. [16] BOTDEN S M B I, TORAB F, BUZINK S N, et al.The importance of haptic feedback in laparoscopic suturing training and the additive value of virtual realitysimulation [J]. Surgical Endoscopy, 2008, 22(5): 1214-1222. [17] DETMER F J, HETTIG J, SCHINDELE D, et al.Virtual and augmented reality systems for renal interventions: A systematic review [J]. IEEE Reviews inBiomedical Engineering, 2017, 10: 78-94. [18] JAVIA L, SARDESAI M G. Physical models and virtual reality simulators in otolaryngology [J]. Otolaryngologic Clinics of North America, 2017, 50(5): 875-891. [19] SCHIAVINA R, BIANCHI L, CHESSA F, et al. Augmented reality to guide selective clamping and tumordissection during robot-assisted partial nephrectomy:A preliminary experience [J]. Clinical GenitourinaryCancer, 2021, 19(3): e149-e155. [20] CHAUVET P, COLLINS T, DEBIZE C, et al. Augmented reality in a tumor resection model [J]. SurgicalEndoscopy, 2018, 32(3): 1192-1201. [21] LU S, SANCHEZ PERDOMO Y P, JIANG X T, et al.Integrating eye-tracking to augmented reality systemfor surgical training [J]. Journal of Medical Systems,2020, 44(11): 1-7. [22] BOTDEN S M, BUZINK S N, SCHIJVEN M P, etal. Augmented versus virtual reality laparoscopic simulation: what is the difference? [J]. World Journal ofSurgery, 2007, 31(4): 764-772. [23] MüLLER M, RASSWEILER M C, KLEIN J, et al.Mobile augmented reality for computer-assisted percutaneous nephrolithotomy [J]. International Journal ofComputer Assisted Radiology and Surgery, 2013, 8(4):663-675. [24] APPELBAUM L, SOSNA J, NISSENBAUM Y, etal. Electromagnetic navigation system for CT-guidedbiopsy of small lesions [J]. AJR American Journal ofRoentgenology, 2011, 196(5): 1194-1200. [25] WU J H, ZHOU P Y, LUO X, et al. Novel laserpositioning navigation to aid puncture during percutaneous nephrolithotomy: A preliminary report [J].World Journal of Urology, 2019, 37(6): 1189-1196. [26] FICHTINGER G, DEGUET A, MASAMUNE K, etal. Image overlay guidance for needle insertion in CTscanner [J]. IEEE Transactions on Bio-Medical Engineering, 2005, 52(8): 1415-1424. [27] RACADIO J M, NACHABE R, HOMAN R, et al.Augmented reality on a C-arm system: A preclinical assessment for percutaneous needle localization [J].Radiology, 2016, 281(1): 249-255. [28] SOLBIATI M, PASSERA K M, ROTILIO A, et al.Augmented reality for interventional oncology: Proofof-concept study of a novel high-end guidance systemplatform [J]. European Radiology Experimental, 2018,2: 18. |
[1] | LIU Ziwen (刘子文), XIAO Lei (肖雷), BAO Jinsong (鲍劲松), TAO Qingbao (陶清宝) . Bearing Incipient Fault Detection Method Based on Stochastic Resonance with Triple-Well Potential System[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 482-487. |
[2] | LI Zhiqiang, BAO Jinsong, LIU Tianyuan, WANG Jiacheng . Judging the Normativity of PAF Based on TFN and NAN[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 569-577. |
[3] | XU Gongguo1* (徐公国), DUAN Xiusheng1 (段修生), LU Hao2 (吕豪). Target Priority Determination Methods by Interval-Valued Intuitionistic Fuzzy Sets with Unknown Attribute Weights[J]. 上海交通大学学报(英文版), 2017, 22(5): 624-632. |
[4] | XU Yan-ran (徐嫣然), ZHAO Jun* (赵俊). Segmentation of Haustral Folds and Polyps on Haustral Folds in CT Colonography Using Complementary Geodesic Distance Transformation[J]. 上海交通大学学报(英文版), 2014, 19(5): 513-520. |
[5] | XU Yan-ran (徐嫣然), ZHAO Jun* (赵俊). Computer-Aided Detection for CT Colonography[J]. 上海交通大学学报(英文版), 2014, 19(5): 531-537. |
[6] | ZHANG Li-xia1 (张丽霞), ZHANG Shao-ting2 (张少霆), XIE Hong-zhi3 (谢洪智),ZHUANG Xia-hai4. Kinect-Based Automatic Spatial Registration Framework for Neurosurgical Navigation[J]. 上海交通大学学报(英文版), 2014, 19(5): 617-623. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 151
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 319
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||