J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (2): 231-239.doi: 10.1007/s12204-021-2403-4
所属专题: 智能机器人
收稿日期:
2021-01-06
出版日期:
2022-03-28
发布日期:
2022-05-02
通讯作者:
XIE Lea* (谢叻),lexie@sjtu.edu.cn
XU Ziweia,b (徐子薇), XIE Lea,b,c * (谢叻)
Received:
2021-01-06
Online:
2022-03-28
Published:
2022-05-02
中图分类号:
. [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 231-239.
XU Ziwei (徐子薇), XIE Le (谢叻). Cable-Driven Flexible Exoskeleton Robot for Abnormal Gait Rehabilitation[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 231-239.
[1] | Office of the Leading Group of the State Council. Major figures on 2020 population census of China [M].Beijing: China Statistic Press, 2021. |
[2] | PIRKER W, KATZENSCHLAGER R. Gait disorders in adults and the elderly people: A clinical guide [J].Wiener Klinische Wochenschrift, 2017, 129: 81-95. |
[3] | CHAO B, LIU J, WANG Y, et al. Stroke prevention and control in China: Achievements, challenges and responses [J]. Chinese Circulation Journal, 2019, 34(7): 625-631 (in Chinese). |
[4] | FIGUEIREDO J, SANTOS C P, MORENO J C. Automatic recognition of gait patterns in human motor disorders using machine learning: A review [J]. Medical Engineering & Physics, 2018, 53: 1-12. |
[5] | MORRIS M E, HUXHAM F E, MCGINLEY J, et al.Gait disorders and gait rehabilitation in Parkinson’s disease [J]. Advances in Neurology, 2001, 87: 347-361. |
[6] | KARAVAS N C, TSAGARAKIS N G, CALDWELL D G. Design, modeling and control of a series elastic actuator for an assistive knee exoskeleton [C]//2012 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. Rome:IEEE, 2012: 1813-1819. |
[7] | SAWICKI G S, KHAN N S. A simple model to estimate plantarflexor muscle-tendon mechanics and energetics during walking with elastic ankle exoskeletons[J]. IEEE Transactions on Biomedical Engineering,2016, 63(5): 914-923. |
[8] | AWAD L N, BAE J, O’DONNELL, et al. A soft robotic exosuit improves walking in patients after stroke[J]. Science Translational Medicine, 2017, 9(400):eaai9084. |
[9] | SCHMIDT K, RIENER R. MAXX: mobility assisting textile exoskeleton that exploits neural control synergies [M]//Converging clinical and engineering research on neurorehabilitation II. Cham: Springer, 2017: 539-543. |
[10] | BARTENBACH V, SCHMIDT K, NAEF M, et al.Concept of a soft exosuit for the support of leg function in rehabilitation [C]//2015 IEEE/RAS-EMBS International Conference on Rehabilitation Robotics (ICORR 2015). Singapore: IEEE, 2015: 125-130. |
[11] | JIA J, WANG W, JIN A, et al. A soft lower limb power-assisted exoskeleton: CN 108992313A [P]. 2018-12-14 (in Chinese). |
[12] | DOLLAR A M, HERR H. Lower extremity exoskeletons and active orthoses: Challenges and state-of-theart [J]. IEEE Transactions on Robotics, 2008, 24(1):144-158. |
[13] | TAYLOR S J, LETHAM B. Forecasting at scale [J].The American Statistician, 2018, 72(1): 37-45. |
[14] | GRIMMER M, QUINLIVAN B T, LEE S, et al. Comparison of the human-exosuit interaction using ankle moment and ankle positive power inspired walking assistance [J]. Journal of Biomechanics, 2019, 83: 76-84. |
[15] | LIU D F, TANG Z Y, PEI Z C. Swing motion control of lower extremity exoskeleton based on admittance method [J]. Journal of Beijing University of Aeronautics and Astronautics, 2015,41(6): 1019-1025(in Chinese). |
[16] | OTT C, MUKHERJEE R, NAKAMURA Y. Unified impedance and admittance control [C]// 2010 IEEE International Conference on Robotics and Automation.Anchorage: IEEE, 2010: 554-561. |
[17] | FEI S, XIAO A. Motor speed control with MFAC optimized by genetic algorithm [J]. Mechanical Engineering & Automation, 2016 (1): 10-12 (in Chinese). |
[18] | ZHUMH, YANG C J, YANGW, et al. A Kinect-based motion capture method for assessment of lower extremity exoskeleton [M]//Wearable sensors and robots.Springer: Singapore, 2017: 481-494. |
[19] | ROY G, BHUIYA A, MUKHERJEE A, et al. Kinect camera based gait data recording and analysis for assistive robotics: An alternative to goniometer based measurement technique [J]. Procedia Computer Science,2018, 133: 763-771. |
[1] | 黎定佳1,2,3,4, 王重阳1,2,3, 郭伟5, 王志东6, 张忠涛5, 刘浩1,2,3. 基于少量多核光纤光栅传感器的单孔连续体手术机器人形状感知[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 312-322. |
[2] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 24-35. |
[3] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 36-44. |
[4] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 45-54. |
[5] | WU Chao* (吴 超), GE Tong (葛 彤), ZHUANG Guang-jiao (庄广胶), LIU Jian-min (刘建民). Research of Underwater Self-Reconfigurable System[J]. 上海交通大学学报(英文版), 2014, 19(1): 35-40. |
[6] | WU Chao (吴 超), WANG Xu-yang (王旭阳), ZHUANG Guang-jiao (庄广胶),ZHAO Min (赵 敏), GE To. Motion of an Underwater Self-Reconfigurable Robot with Tree-Like Configurations[J]. 上海交通大学学报(英文版), 2013, 18(5): 598-605. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||