Journal of Shanghai Jiao Tong University(Science) ›› 2020, Vol. 25 ›› Issue (5): 545-552.doi: 10.1007/s12204-020-2211-2
• • 下一篇
QIN Zhichang (秦志昌), XIN Ying (辛英), SUN Jianqiao (孙建桥)
出版日期:
2020-10-28
发布日期:
2020-09-11
通讯作者:
QIN Zhichang (秦志昌)
E-mail:zcqin@sdut.edu.cn
QIN Zhichang (秦志昌), XIN Ying (辛英), SUN Jianqiao (孙建桥)
Online:
2020-10-28
Published:
2020-09-11
Contact:
QIN Zhichang (秦志昌)
E-mail:zcqin@sdut.edu.cn
摘要: This paper presents a study of optimal control design for a single-inverted pendulum (SIP) system with
the multi-objective particle swarm optimization (MOPSO) algorithm. The proportional derivative (PD) control
algorithm is utilized to control the system. Since the SIP system is nonlinear and the output (the pendulum angle)
cannot be directly controlled (it is under-actuated), the PD control gains are not tuned with classical approaches.
In this work, the MOPSO method is used to obtain the best PD gains. The use of multi-objective optimization
algorithm allows the control design of the system without the need of linearization, which is not provided by
using classical methods. The multi-objective optimal control design of the nonlinear system involves four design
parameters (PD gains) and six objective functions (time-domain performance indices). The Hausdorff distances of
consecutive Pareto sets, obtained in the MOPSO iterations, are computed to check the convergence of the MOPSO
algorithm. The MOPSO algorithm finds the Pareto set and the Pareto front efficiently. Numerical simulations
and experiments of the rotary inverted pendulum system are done to verify this design technique. Numerical and
experimental results show that the multi-objective optimal controls offer a wide range of choices including the
ones that have comparable performance to the linear quadratic regulator (LQR) control.
中图分类号:
QIN Zhichang, XIN Ying, SUN Jianqiao . Multi-Objective Optimal Feedback Controls for Under-Actuated Dynamical System[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 545-552.
QIN Zhichang, XIN Ying, SUN Jianqiao . Multi-Objective Optimal Feedback Controls for Under-Actuated Dynamical System[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 545-552.
[1] | HO W K, GAN O P, TAY E B, et al. Performance and gain and phase margins of well-known PID tuning formulas [J]. IEEE Transactions on Control Systems Technology, 1996, 4(4): 473-477. |
[2] | WANG Q G, LEE T H, FUNG H W, et al. PID tuning for improved performance [J]. IEEE Transactions on Control Systems Technology, 1999, 7(4): 457-465. |
[3] | ZIEGLER J G, NICHOLS N B. Optimum settings for automatic controllers [J]. Journal of Dynamic Systems,Measurement, and Control, 1993, 115 (2): 220-222. |
[4] | NGATCHOU P, ZAREI A, EI-SHARKAWI M A. Pareto multi-objective optimization [C]//Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems. Arlington, VA,USA: IEEE, 2005: 84-91. |
[5] | AYALA H V H, DOS SANTOS COELHO L. Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator [J]. Expert Systems with Applications, 2012, 39(10): 8968-8974. |
[6] | XU Z H, LI S, CHEN Q W, et al. MOPSO based multi-objective trajectory planning for robot manipulators [C]//Proceedings of International Conference on Information Science and Control Engineering. Shanghai,China: IEEE, 2015: 824-828. |
[7] | CENSOR Y. Pareto optimality in multiobjective problems[J]. Applied Mathematics & Optimization, 1977,4(4): 41-59. |
[8] | DELLNITZ M, SCH¨UTZE O, HESTERMEYER T. Covering Pareto sets by multilevel subdivision techniques[J]. Journal of Optimization Theory and Applications,2005, 124(1): 113-136. |
[9] | SRINIVAS M, PATNAIK L M. Genetic algorithms: A survey [J]. Computer, 1994, 27(6): 17-26. |
[10] | KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization:Artificial bee colony (ABC) algorithm [J]. Journal of Global Optimization, 2007: 39(3): 459-471. |
[11] | CHUN J S, KIM M K, JUNG H K, et al. Shape optimization of electromagnetic devices using immune algorithm[J]. IEEE Transactions on Magnetics, 1997,33(2): 1876-1879. |
[12] | KENNEDY J, EBERHART R. Particle swarm optimization [C]//Proceedings of IEEE International Conference on Neural Networks. Perth, Australia: IEEE,1995: 1942-1948. |
[13] | KENNEDY J, EBERHART R. Particle swarm optimization[M]//Encyclopedia of Machine Learning.Boston, MA, USA: Springer, 2011: 760-766. |
[14] | ZHAO S Z, IRUTHAYARAJANM W, BASKAR S, et al. Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization[J]. Information Sciences, 2011, 181(16): 3323-3335. |
[15] | GIRIRAJKUMAR S M, JAYARAJ D, KISHAN A R.PSO based tuning of a PID controller for a high performance drilling machine [J]. International Journal of Computer Applications, 2010, 1(19): 12-18. |
[16] | HASSANZADEH I, MOBAYEN S. PSO-based controller design for rotary inverted pendulum system [J].Journal of Applied Sciences, 2008, 8(16): 2907-2912. |
[17] | JAAFAR H I, SULAIMA M F, MOHAMED Z,et al. Optimal PID controller parameters for nonlinear gantry crane system via MOPSO technique[C]//Proceedings of IEEE International Conference on Sustainable Utilization and Development in Engineering and Technology. Selangor, Malaysia: IEEE, 2013:86-91. |
[18] | ZHAO Q Q, QIN Z C, SUN J Q. Influence of design reference on tracking performance of feedback control[J]. Transactions of Tianjin University, 2018, 24(1):66-72. |
[19] | PARSOPOULOS K E, VRAHATIS M N. Particle swarm optimization method in multiobjective problems [C]//Proceedings of ACM Symposium on Applied Computing. Madrid, Spain: ACM, 2002: 603-607. |
[20] | COELLO C A C, LECHUGA M S. MOPSO: A proposal for multiple objective particle swarm optimization [C]//Proceedings of the Congress on Evolutionary Computation. Honolulu, HI, USA: IEEE, 2002: 1051-1056. |
[21] | POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization: An overview [J], Swarm Intelligence,2007, 1(1): 33-57. |
[22] | COELLO C A C, PULIDO G T, LECHUGA M S.Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279. |
[23] | COELLO C A C, LAMONT G B, VAN VELDHUIZEN D A. Evolutionary algorithms for solving multi-objective problems [M]. 2nd ed. New York, USA:Springer, 2007. |
[24] | HUTTENLOCHER D P, KLANDERMAN G A, RUCKLIDGEWJ. Comparing images using the Hausdorff distance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850-863. |
[25] | SCH¨UTZE O, ESQUIVEL X, LARA A, et al. Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation,2012, 16(4): 504-522. |
[1] | PENG Pai, CHEN Cong , YANG Yongsheng . Particle Swarm Optimization Based on Hybrid Kalman Filter and Particle Filter [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 681-688. |
[2] | LIU Kai (刘凯), WU Yang (吴阳), GE Zhishang (葛志尚), WANG Yangwei (王扬威), XU Jiaqi (许嘉. Adaptive Multi-Objective Optimization of Bionic Shoulder Joint Based on Particle Swarm Optimization[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(4): 550-. |
[3] | JIAO Qinglong (焦庆龙), XU Da (徐达). A Discrete Bat Algorithm for Disassembly Sequence Planning[J]. sa, 2018, 23(2): 276-285. |
[4] | BIAN Li1* (边 莉), BIAN Chen-yuan1 (边晨源), WANG Shu-min2 (王书民). Large Thinned Array Design Based on Multi-objective Cross Entropy Algorithm[J]. 上海交通大学学报(英文版), 2015, 20(4): 437-442. |
[5] | MAO Li1 (毛力), SONG Yi-chun1* (宋益春), LI Yin1 (李引),YANG Hong2 (杨弘), XIAO Wei2 (肖炜). Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm[J]. 上海交通大学学报(英文版), 2015, 20(1): 51-55. |
[6] | YU Hai-yang1* (于海洋), ZHANG Shi-lian1 (张世联), LI Cong2 (李聪), WU Shao-bo1 (武少波). Particle Swarm Approach for Structural Optimization of Battleship Strength Deck Under Air Blast[J]. 上海交通大学学报(英文版), 2014, 19(4): 481-487. |
[7] | WANG Ying-lin1,2 (王英林), XU He-ming2* (徐鹤鸣). Multiobjective Particle Swarm Optimization Without the Personal Best[J]. 上海交通大学学报(英文版), 2014, 19(2): 155-159. |
[8] | QU Guo-dong* (屈国栋), LOU Zhang-hua (楼章华). Application of Particle Swarm Algorithm in the Optimal Allocation of Regional Water Resources Based on Immune Evolutionary Algorithm[J]. 上海交通大学学报(英文版), 2013, 18(5): 634-640. |
[9] | LI Xiang-bao* (李祥宝), JI Rui (季睿), YANG Yu-pu (杨煜普). Optimization for PID Controller of Cryogenic Ground Support Equipment Based on Cooperative Random Learning Particle Swarm Optimization[J]. 上海交通大学学报(英文版), 2013, 18(2): 140-146. |
[10] | HAN Yi (韩 毅), CAI Jian-hu (蔡建湖), IKOU Kaku, LI Yan-lai (李延来) CHE. Evolutionary Algorithms for Solving Unconstrained Multilevel Lot-Sizing Problem with Series Structure[J]. 上海交通大学学报(英文版), 2012, 17(1): 39-044. |
阅读次数 | ||||||||||||||||||||||
全文 37
|
|
|||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||