[1] |
LIU H J, ZOU C, SHI B C, et al. Thermal lattice-BGK model based on large-eddy simulation of turbulent natural convection due to internal heat generation[J]. International Journal of Heat and Mass Transfer,2006, 49: 4672-4680.
|
[2] |
SHI B C, GUO Z L. Thermal lattice BGK simulation of turbulent natural convection due to internal heat generation [J]. International Journal of Modern Physics B, 2003, 17(1/2): 173-177.
|
[3] |
LADD A J C, VERBERG R. Lattice-Boltzmann simulations of particle-fluid suspensions [J]. Journal of Statistical Physics, 2001, 104(5/6): 1191-1251.
|
[4] |
SHEIKHOLESLAMIM, GORJI-BANDPYM, GANJI D D. Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid [J]. Powder Technology,2014, 254: 82-93.
|
[5] |
LIU X L, CHENG P. Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates [J]. International Journal of Heat and Mass Transfer, 2013, 64: 1041-1052.
|
[6] |
SEMMA E, EI GANAOUI M, BENNACER R, et al.Investigation of flows in solidification by using the lattice Boltzmann method [J]. International Journal of Thermal Sciences, 2008, 47: 201-208.
|
[7] |
MOUNTRAKIS L, LORENZ E, MALASPINAS O, et al. Parallel performance of an IB-LBM suspension simulation framework [J]. Journal of Computational Science,2015, 9: 45-50.
|
[8] |
MENG X H, GUO Z L. Localized lattice Boltzmann equation model for simulating miscible viscous displacement in porous media [J]. International Journal of Heat and Mass Transfer, 2016, 100: 767-778.
|
[9] |
LIU Q, HE Y L. Lattice Boltzmann simulations of convection heat transfer in porous media [J]. Physica A,2017, 465: 742-753.
|
[10] |
CHAI Z H, LIANG H, DU R, et al. A lattice Boltzmann model for two-phase flow in porous media [J].SIAM Journal on Scientific Computing, 2019, 41(4):B746-B772.
|
[11] |
GUO Z L, SHU C. Lattice Boltzmann method and its applications in engineering [M]. Singapore: World Scientific Publishing, 2013.
|
[12] |
SUCCI S. The lattice Boltzmann equation for fluid dynamics and beyond [M]. Oxford: Oxford University Press, 2001.
|
[13] |
KRGER T, KUSUMAATMAJA H, KUZMIN A, et al.The lattice Boltzmann method: Principles and practice[M]. Switzerland: Springer, 2017.
|
[14] |
FRISCH U, HASSLACHER B, POMEAU Y. Latticegas automata for the Navier-Stokes equation [J]. Physical Review Letters, 1986, 56(14): 1505-1508.
|
[15] |
BHATNAGAR P L, GROSS E P, KROOKM. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525.
|
[16] |
B¨O SCH F, KARLIN I V. Exact lattice Boltzmann equation [J]. Physical Review Letters, 2013, 111:090601.
|
[17] |
HE X Y, CHEN S Y, DOOLEN G D. A novel thermal model for the lattice Boltzmann method in incompressible limit [J]. Journal of Computational Physics, 1998,146: 282-300.
|
[18] |
HE X Y, LUO L S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation [J]. Physical Review E, 1997,56(6): 6811-6817.
|
[19] |
YE H F, KUANG B, YANG Y H. Derivation of lattice Boltzmann equation via analytical characteristic integral [J]. Chinese Physics B, 2019, 28(1): 014701.
|
[20] |
SHAN X W. The mathematical structure of the lattices of the lattice Boltzmann method [J]. Journal of Computational Science, 2016, 17: 475-481.
|
[21] |
HWANG Y H. Macroscopic model and truncation error of discrete Boltzmann method [J]. Journal of Computational Physics, 2016, 322: 52-73.
|
[22] |
YONG W A, ZHAO W F, LUO L S. Theory of the lattice Boltzmann method: Derivation of macroscopic equations via the Maxwell iteration [J]. Physical Review E, 2016, 93: 033310.
|
[23] |
DELLAR P J. An interpretation and derivation of the lattice Boltzmann method using Strang splitting [J].Computers and Mathematics with Applications, 2013,65: 129-141.
|
[24] |
ARFKEN G, WEBER H, HARRIS F E. Mathematical methods for physicists: A comprehensive guide [M].7th ed. Cambridge, Massachusetts, USA: Academic Press, 2011.
|