Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (5): 579-583.doi: 10.1007/s12204-019-2116-0
NKONDE Sampa, JIANG Chun (姜淳)
出版日期:
2019-10-08
发布日期:
2019-09-27
通讯作者:
NKONDE Sampa
E-mail:nkondes@sjtu.edu.cn
NKONDE Sampa, JIANG Chun (姜淳)
Online:
2019-10-08
Published:
2019-09-27
Contact:
NKONDE Sampa
E-mail:nkondes@sjtu.edu.cn
摘要: We theoretically demonstrate a model which can be used to analyze frequency up-conversion of a laser wavelength by using thermal population. The proposed model uses a rate equation model of ytterbium-doped fiber with thermal population effect. The rate and power propagation equations are set up and numerically analyzed to elucidate the dependence of frequency up-conversion efficiency and thermal-optical conversion efficiency on ambient thermal power. The analytical techniques and numerical results show that using pump laser at 1 000 nm, the wavelength can be converted into 900 nm with an up-conversion quantum efficiency of about 99.97% and a cooling efficiency of about 11.1%. This theoretical model is a promising candidate for vast applications in energyefficient laser and energy-utilizing field.
中图分类号:
NKONDE Sampa, JIANG Chun (姜淳). Lasing Frequency Up-Conversion by Using Thermal Population[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 579-583.
NKONDE Sampa, JIANG Chun (姜淳). Lasing Frequency Up-Conversion by Using Thermal Population[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 579-583.
[7] | THIEDE J, DISTEL J, GREENFIELD S R, et al.Cooling to 208 K by optical refrigeration [J]. AppliedPhysics Letters, 2005, 86: 154107. |
[1] | MUNGAN C E, BUCHWALD M I, EDWARDS B C,et al. Internal laser cooling of Yb3+-doped glass measured between 100 and 300K [J]. Applied Physics Letters,1997, 71(11): 1458-1460. |
[8] | RUAN X L, KAVIANY M. Advances in laser coolingof solids [J]. Journal of Heat Transfer, 2007, 129(1):3-10. |
[2] | LUO X, EISAMAN M D, GOSNELL T R. Laser cooling of a solid by 21 K staring from room temperature[J]. Optics Letters, 1998, 23(8): 639-641. |
[9] | EPSTEIN R, SHEIK-BAHAE M. Optical refrigeration:Science and applications of laser cooling of solids[M]. Weinheim, Germany: Wiley-VCH, 2009. |
[3] | EDWARDS B C, ANDERSON J E, EPSTEIN R I, et al. Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration [J]. Journal of Applied Physics, 1999, 86(11): 6489-6493. |
[10] | RUAN X L, KAVIANY M. Enhanced nonradiative relaxationand photoluminescence quenching in random,doped nanocrystalline powders [J]. Journal of AppliedPhysics, 2005, 97: 104331. |
[11] | PASK H M, CARMAN R J, HANNA D C, et al.Ytterbium-doped silica fiber lasers: Versatile sourcesfor the 1—1.2 μm region [J]. IEEE Journal of SelectedTopics in Quantum Electronics, 1995, 1(1): 2-13. |
[4] | RAYNERA, FRIESEME J, TRUSCOTT A G, et al.Laser cooling of a solid from ambient temperature [J].Journal of Modern Optics, 2001, 48(1): 103-114. |
[5] | FERN′ANDEZ J, MENDIOROZ A, GARC′IA A J, etal. Anti-Stokes laser-induced internal cooling of Yb3+-Doped glasses [J]. Physical Review B, 2000, 62(5):3213-3217. |
[12] | PASCHOTTA R, NILSSON J, BARBER P R, et al.Lifetime quenching in Yb-doped fibres [J]. Optics Communications,1997, 136: 375-378. |
[6] | HOYT C W, HASSELBECK M P, SHEIK-BAHAEM,et al. Advances in laser cooling of thulium-doped glass[J]. Journal of the Optical Society of America B, 2003,20(5): 1066-1074. |
[7] | THIEDE J, DISTEL J, GREENFIELD S R, et al.Cooling to 208 K by optical refrigeration [J]. AppliedPhysics Letters, 2005, 86: 154107. |
[13] | SELETSKIY D V, EPSTEIN R, SHEIK-BAHAE M.Laser cooling in solids: Advances and prospects [J].Reports on Progress in Physics, 2016, 79(9): 096401. |
[8] | RUAN X L, KAVIANY M. Advances in laser coolingof solids [J]. Journal of Heat Transfer, 2007, 129(1):3-10. |
[14] | PIEL A. Plasma physics: An introduction to the laboratory,space, and fusion plasmas [M]. Berlin, Germany:Springer, 2010 |
[9] | EPSTEIN R, SHEIK-BAHAE M. Optical refrigeration:Science and applications of laser cooling of solids[M]. Weinheim, Germany: Wiley-VCH, 2009. |
[15] | BURSHTEIN Z, KALISKY Y, LEVY S Z, et. al. Impurity local phonon nonradiative quenching of Yb3+fluorescence in ytterbium-doped silicate glasses [J].IEEE Journal of Quantum Electronics, 2000, 36(8):1000-1007. |
[16] | TANGUY E, LARAT C, POCHOLLE J P. Modellingof the erbium-ytterbium laser [J]. Optics Communications,1998, 153(1): 172-183. |
[10] | RUAN X L, KAVIANY M. Enhanced nonradiative relaxationand photoluminescence quenching in random,doped nanocrystalline powders [J]. Journal of AppliedPhysics, 2005, 97: 104331. |
[11] | PASK H M, CARMAN R J, HANNA D C, et al.Ytterbium-doped silica fiber lasers: Versatile sourcesfor the 1—1.2 μm region [J]. IEEE Journal of SelectedTopics in Quantum Electronics, 1995, 1(1): 2-13. |
[17] | HAUMESSER P H, GAUM′E R, VIANA B, et al. Determinationof laser parameters of ytterbium-dopedoxide crystalline materials [J]. Journal of the OpticalSociety of America B, 2002, 19(10): 2365-2375. |
[12] | PASCHOTTA R, NILSSON J, BARBER P R, et al.Lifetime quenching in Yb-doped fibres [J]. Optics Communications,1997, 136: 375-378. |
[18] | MUNGAN C E, GOSNELL T R. Laser cooling ofsolids [J]. Advances in Atomic, Molecular and OpticalPhysics, 1999, 40: 161-228. |
[13] | SELETSKIY D V, EPSTEIN R, SHEIK-BAHAE M.Laser cooling in solids: Advances and prospects [J].Reports on Progress in Physics, 2016, 79(9): 096401. |
[19] | BOWMAN S R, O’CONNOR S P, BISWAL S. Ytterbiumlaser with reduced thermal loading [J]. IEEEJournal of Quantum Electronics, 2005, 41(12): 1510-1517. |
[14] | PIEL A. Plasma physics: An introduction to the laboratory,space, and fusion plasmas [M]. Berlin, Germany:Springer, 2010 |
[20] | SELETSKIY D V, HEHLEN M P, EPSTEIN R I, et al.Cryogenic optical refrigeration [J]. Advances in Opticsand Photonics, 2012, 4(1): 78-107. |
[21] | ZHUANG R Z,WANG G F. Sequential energy transferup-conversion process in Yb3+/Er3+:SrMoO4 crystal[J]. Optic Express, 2016, 24(7): 7543-7557. |
[15] | BURSHTEIN Z, KALISKY Y, LEVY S Z, et. al. Impurity local phonon nonradiative quenching of Yb3+fluorescence in ytterbium-doped silicate glasses [J].IEEE Journal of Quantum Electronics, 2000, 36(8):1000-1007. |
[16] | TANGUY E, LARAT C, POCHOLLE J P. Modellingof the erbium-ytterbium laser [J]. Optics Communications,1998, 153(1): 172-183. |
[22] | SHEIK-BAHAE M, EPSTEIN R I. Optical refrigeration[J]. Nature Photonics, 2007, 1: 693-699. |
[17] | HAUMESSER P H, GAUM′E R, VIANA B, et al. Determinationof laser parameters of ytterbium-dopedoxide crystalline materials [J]. Journal of the OpticalSociety of America B, 2002, 19(10): 2365-2375. |
[23] | SHEIK-BAHAE M, IMANGHOLI B, HASSELBECKM P, et al. Advances in laser cooling of semiconductors[J]. Proceedings of the SPIE, 2006, 6115: 611518. |
[18] | MUNGAN C E, GOSNELL T R. Laser cooling ofsolids [J]. Advances in Atomic, Molecular and OpticalPhysics, 1999, 40: 161-228. |
[19] | BOWMAN S R, O’CONNOR S P, BISWAL S. Ytterbiumlaser with reduced thermal loading [J]. IEEEJournal of Quantum Electronics, 2005, 41(12): 1510-1517. |
[24] | SHEIK-BAHAE M, EPSTEIN R I. Laser cooling ofsolids [J]. Laser and Photonics Review, 2009, 3(1/2):67-84. |
[20] | SELETSKIY D V, HEHLEN M P, EPSTEIN R I, et al.Cryogenic optical refrigeration [J]. Advances in Opticsand Photonics, 2012, 4(1): 78-107. |
[21] | ZHUANG R Z,WANG G F. Sequential energy transferup-conversion process in Yb3+/Er3+:SrMoO4 crystal[J]. Optic Express, 2016, 24(7): 7543-7557. |
[22] | SHEIK-BAHAE M, EPSTEIN R I. Optical refrigeration[J]. Nature Photonics, 2007, 1: 693-699. |
[23] | SHEIK-BAHAE M, IMANGHOLI B, HASSELBECKM P, et al. Advances in laser cooling of semiconductors[J]. Proceedings of the SPIE, 2006, 6115: 611518. |
[24] | SHEIK-BAHAE M, EPSTEIN R I. Laser cooling ofsolids [J]. Laser and Photonics Review, 2009, 3(1/2):67-84. |
[1] | NKONDE Sampa, JIANG Chun (姜淳). Theoretical Modelling of Cascaded Er3+-Doped, Tm3+-Doped and Nd3+-Doped Fibers for 0.4 to 2.0 μm Emission Spectra[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 754-762. |
[2] | NKONDE Sampa, JIANG Chun (姜淳). Modeling Nd3+-Yb3+-Tm3+-Er3+ Codoped Telluride Glass Fiber for 0.4 to 2.0 μm Emission Spectra[J]. sa, 2018, 23(3): 352-. |
[3] | YIN Jinpeng1 (尹金鹏), GAO Wenyuan1* (高文元), HAO Liping1 (郝丽萍), LIU Guishan1 (刘贵山),. Theoretical Analysis of Er3+-Doped Telluride Glass Fiber Amplifier for 2.700 μm Laser Amplification[J]. 上海交通大学学报(英文版), 2017, 22(5): 513-516. |
[4] | ABDALLA Saadelnour, JIANG Chun* (姜淳). Gain and Emission Spectrum Characteristics of 465 nm Laser Diode Pumped Tm3+-Doped Telluride Glass Fibers[J]. 上海交通大学学报(英文版), 2017, 22(4): 402-405. |
[5] | YIN Jinpeng (尹金鹏), GAO Wenyuan* (高文元), LIU Guishan (刘贵山),HAO Hongshun (郝洪顺), YAN. Gain and Noise Figure Analysis of Er3+-Doped YAG Transparent Ceramic Microchip Amplifier[J]. 上海交通大学学报(英文版), 2017, 22(4): 406-410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||