[1] |
XU Y, ZHU Q, FAN Z Z, et al. Using the idea ofthe sparse representation to perform coarse-to-fine facerecognition [J]. Information Sciences, 2013, 238(7):138-148.
|
[2] |
ZENG S N, YANG X, GOU J P. Using kernel sparserepresentation to perform coarse-to-fine recognition offace images [J]. Optik-International Journal for Lightand Electron Optics, 2017, 140: 528-535.
|
[3] |
ZHANG L, YANG M, FENG X C. Sparse representationor collaborative representation: Which helps facerecognition? [C]// IEEE International Conference onComputer Vision. [s.l.]: IEEE, 2012: 471-478.
|
[4] |
XU Y, LI Z M, PAN J S, et al. Face recognition basedon fusion of multi-resolution Gabor features [J]. NeuralComputing & Applications, 2013, 23(5): 1251-1256.
|
[5] |
JIA S, HU J, XIE Y, et al. Gabor cube selection basedmultitask joint sparse representation for hyperspectralimage classification [J]. IEEE Transactions on Geoscienceand Remote Sensing, 2016, 54(6): 3174-3187.
|
[6] |
WANG W, WANG R P, SHAN S G, et al. Probabilisticnearest neighbor search for robust classification offace image sets [C]// IEEE International Conferenceand Workshops on Automatic Face and Gesture Recognition.[s.l.]: IEEE, 2015: 1-7.
|
[7] |
KASEMSUMRAN P, AUEPHANWIRIYAKUL S,THEERA-UMPON N. Face recognition using stringgrammar fuzzy K-nearest neighbor [C]// InternationalConference on Knowledge and Smart Technology. [s.l.]:IEEE, 2016: 584-596.
|
[8] |
SERRANO ′A, DE DIEGO I M, CONDE C, et al. Recentadvances in face biometrics with Gabor wavelets:A review [J]. Pattern Recognition Letters, 2010, 31(5):372-381.
|
[9] |
LV X Q, WU J F, LIU W. Face image feature selectionbased on Gabor feature and recursive feature elimination[C]//Sixth International Conference on IntelligentHuman-Machine Systems and Cybernetics. [s.l.]:IEEE, 2014: 266-269.
|
[10] |
ABDULRAHMAN M, GWADABE T R, ABDU F J,et al. Gabor wavelet transform based facial expressionrecognition using PCA and LBP [C]//Signal Processingand Communications Applications Conference.[s.l.]: IEEE, 2014: 2265-2268.
|
[11] |
CHEN X, RAMADGE P J. Collaborative representation,sparsity or nonlinearity: What is key to dictionarybased classification? [C]//IEEE InternationalConference on Acoustics, Speech and Signal Processing.IEEE, 2014: 5227-5231.
|
[12] |
ZENG S N, GOU J P, DENG L M. An antinoise sparserepresentation method for robust face recognition viajoint l1 and l2 regularization [J]. Expert Systems withApplications, 2017, 82: 1-9.
|
[13] |
CAI S J, ZHANG L, ZUO W M, et al. A probabilisticcollaborative representation based approach for patternclassification [C]// Computer Vision and PatternRecognition. [s.l.]: IEEE, 2016: 2950-2959.
|
[14] |
ZENG S N, YANG X, GOU J P. Multiplication fusionof sparse and collaborative representation for robustface recognition [J]. Multimedia Tools & Applications,2016, 76(20): 20889-20907.
|
[15] |
ZENG S N, GOU J P, YANG X. Improvingsparsity of coefficients for robust sparse andcollaborative representation-based image classification[J]. Neural Computing & Applications, 2017.https://doi.org/10.1007/s00521-017-2900-4 (publishedonline).
|
[16] |
XU Y, ZHU Q, CHEN Y, et al. An improvement to thenearest neighbor classifier and face recognition experiments[J]. International Journal of Innovative ComputingInformation and Control, 2013, 9(2): 543-554.
|
[17] |
FENG Q, PAN J S, YAN L. Nearest feature centreclassifier for face recognition [J]. Electronics Letters,2012, 48(18): 1120-1122.
|
[18] |
TANG B, HE H. ENN: Extended nearest neighbormethod for pattern recognition [research frontier][J]. IEEE Computational Intelligence Magazine, 2015,10(3): 52-60.
|
[19] |
WANG Y Z, JHA S, CHAUDHURI K. Analyzingthe robustness of nearest neighbors to adversarialexamples [EB/OL]. (2018-03-11) [2018-05-09].https://arxiv.org/abs/1706.03922.
|
[20] |
WRIGHT J, YANG A Y, GANESH A, et al. Robustface recognition via sparse representation [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2009, 31(2): 210-227.
|
[21] |
PHILLIPS P J, MOON H, RIZVI S A, et al. TheFERET evaluation methodology for face-recognitionalgorithms [J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 2000, 22(10): 1090-1104.
|
[22] |
GEORGHIADES A S, BELHUMEUR P N,KRIEGMAN D J. From few to many: Illuminationcone models for face recognition under variablelighting and pose [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2002, 23(6):643-660.
|
[23] |
HUANG G B, MATTAR M, BERG T, et al. Labeledfaces in the wild: A database for studying face recognitionin unconstrained environments [C]//Dans Workshopon Faces in Real-Life Images: Detection, Alignment,and Recognition. [s.l.]: Inria, HAL, 2008: 1-15.
|
[24] |
KIM S J, KOH K, LUSTIG M, et al. An interior-pointmethod for large-scale 1-regularized least squares [J].IEEE Journal of Selected Topics in Signal Processing,2007, 1(4): 606-617.
|
[25] |
BECK A, TEBOULLE M. A fast iterative shrinkagethresholdingalgorithm for linear inverse problems [J].SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
|