上海交通大学学报(英文版) ›› 2013, Vol. 18 ›› Issue (4): 434-442.doi: 10.1007/s12204-013-1418-x
PAN Feng1* (潘 峰), ZHAO Hai-bo2 (赵海波), LIU Hua-shan1 (刘华山)
出版日期:
2013-08-28
发布日期:
2013-08-12
通讯作者:
PAN Feng(潘 峰)
E-mail:fpan@dhu.edu.cn
PAN Feng1* (潘 峰), ZHAO Hai-bo2 (赵海波), LIU Hua-shan1 (刘华山)
Online:
2013-08-28
Published:
2013-08-12
Contact:
PAN Feng(潘 峰)
E-mail:fpan@dhu.edu.cn
摘要: This study proposes two metrics using the nearest neighbors method to improve the accuracy of time-series forecasting. These two metrics can be treated as a hybrid forecasting approach to combine linear and non-linear forecasting techniques. One metric redefines the distance in k-nearest neighbors based on the coefficients of autoregression (AR) in time series. Meanwhile, an improvement to Kulesh’s adaptive metrics in the nearest neighbors is also presented. To evaluate the performance of the two proposed metrics, three types of time-series data, namely deterministic synthetic data, chaotic time-series data and real time-series data, are predicted. Experimental results show the superiority of the proposed AR-enhanced k-nearest neighbors methods to the traditional k-nearest neighbors metric and Kulesh’s adaptive metrics.
中图分类号:
PAN Feng1* (潘 峰), ZHAO Hai-bo2 (赵海波), LIU Hua-shan1 (刘华山). Time-Series Forecasting Using Autoregression Enhanced k-Nearest Neighbors Method[J]. 上海交通大学学报(英文版), 2013, 18(4): 434-442.
PAN Feng1* (潘 峰), ZHAO Hai-bo2 (赵海波), LIU Hua-shan1 (刘华山). Time-Series Forecasting Using Autoregression Enhanced k-Nearest Neighbors Method[J]. Journal of shanghai Jiaotong University (Science), 2013, 18(4): 434-442.
[1] Makridakis S, Wheelwright S, Hyndman R. Forecasting: Methods and applications [M]. New York: Wiley, 1998. [2] Kuo R J, Xue K C. Fuzzy neural networks with application to sales forecasting [J]. Fuzzy Sets and Systems, 1999, 108(2): 123-143. [3] Wagner N, Michalewicz Z, Khouja M, et al. Time series forecasting for dynamic environments: The DyFor genetic program model [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(4): 433-452. [4] Kulesh M, Holschneider M, Kurennaya K. Adaptive metrics in the nearest neighbours method [J]. Physica D, 2008, 237(5): 283-291. [5] Small M, Tse C K. Optimal embedding parameters: A modeling paradigm [J]. Physica D, 2004, 194(3-4): 283-296. [6] Cao L J, Tay F E H. Support vector machine with adaptive parameters in financial time series forecasting [J]. IEEE Transaction on Neural Networks, 2003, 14(6): 1506-1518. [7] Huang K, Yu T H K. Ratio-based lengths of intervals to improve fuzzy time series forecasting [J]. IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics, 2006, 36(2): 328-340. [8] Yu H K. A refined fuzzy time-series model for forecasting [J]. Physica A, 2005, 346(3-4): 657-681. [9] Huang K, Yu H K. An N-th order heuristic fuzzy time series model for TAIEX forecasting [J]. International Journal of Fuzzy Systems, 2003, 5(4): 247-253. [10] Sfetsos A, Siriopoulos C. Time series forecasting with a hybrid clustering scheme and pattern recognition [J]. IEEE Transactions on System, Man, and Cybernetics. Part A: Systems and Humans, 2004, 34(3): 399-405. [11] Zhang G P. Time series forecasting using a hybrid ARIMA and neural network model [J]. Neurocomputing, 2003, 50(1): 159-175. [12] Murray D B. Forecasting a chaotic time series using an improved metric for embedding space [J]. Physica D, 1993, 68(8): 318-325. [13] Cao L. Practical method for determining the minimum embedding dimension of a scalar time series [J]. Physica D, 1997, 110(1-2): 43-50. [14] Weigend A S, Gershenfeld N A. Results of the time series prediction competition at the Santa Fe Institute [C]// IEEE International Conference on Neural Networks. San Francisco, USA: IEEE, 1993: 1786-1793. |
[1] | ZHANG Zhanluo (张战罗), ZHANG Zhinan (张执南), EIKEVIK Trygve Magne, SMITT Silje Marie. Ventilation System Heating Demand Forecasting Based on Long Short-Term Memory Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 129-137. |
[2] | ZHANG Jun* (张军), ZHAO Shenwei (赵申卫), WANG Yuanqiang (王远强), ZHU Xinshan (朱新山). Improved Social Emotion Optimization Algorithm for Short-Term Traffic Flow Forecasting Based on Back-Propagation Neural Network[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 209-219. |
[3] | HE Shanhong (何善红), RONG Baizhong (荣百中), QU Meng (瞿勐), WANG Shuangfei (王双飞), LI H. Two-Factor Fuzzy Time Series for Equipment Data Prediction[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 684-690. |
[4] | WANG Yinglin (王英林). Stock Market Forecasting with Financial Micro-Blog Based on Sentiment and Time Series Analysis[J]. 上海交通大学学报(英文版), 2017, 22(2): 173-179. |
[5] | PAN Feng1* (潘 峰), ZHAO Hai-bo2 (赵海波). Online Sequential Extreme Learning Machine Based Multilayer Perception with Output Self Feedback for Time Series Prediction[J]. 上海交通大学学报(英文版), 2013, 18(3): 366-375. |
[6] | ZHANG Yang (张 扬), WANG Meng-ling (王梦灵). Peak Traffic Forecasting Using Nonparametric Approaches[J]. 上海交通大学学报(英文版), 2012, 17(1): 76-081. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||