[1] Conway B E. Electrochemical supercapacitors: Scientific fundamental and technological applications [M].New York: Kluwer Academic Publishers, 1999.[2] Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nature Materials, 2008, 7: 845-854.[3] Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors [J]. Chemical Society Reviews, 2012, 41: 797-828.[4] Conway B E, PellWG. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices [J].Journal of Solid State Electrochemistry, 2003, 7: 637-644.[5] Xue T, Xu C L, Zhao D D, et al. Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates [J]. Journal of Power Sources, 2007, 164:953-958.[6] Chen W C, Hu C C, Wang C C, et al. Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors [J].Journal of Power Sources, 2004, 125: 292-298.[7] Takasu Y, Murakami Y. Design of oxide electrodes with large surface area [J]. Electrochimica Acta, 2000, 45: 4135-4141.[8] Zhou Y, Switzer J A. Growth of cerium (IV) oxide films by the electrochemical generation of base method [J]. Journal of Alloys and Compounds, 1996, 237: 1-5.[9] Wang Y, Guo C X, Liu J H, et al. CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor [J]. Dalton Transactions, 2011, 40:6388-6391.[10] Chou S L, Wang J Z, Liu H K, et al. Electrochemical deposition of porous Co(OH)2 nanoflake films on stainless steel mesh for flexible supercapacitors [J]. Journal of The Electrochemical Society, 2008, 155: A926-A929.[11] Pang S C, Anderson M A, Chapman T W. Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide [J]. Journal of The Electrochemical Society, 2000, 147: 444-450.[12] Chou S L, Wang J Z, Chew S Y, et al. Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors [J]. Electrochemistry Communications, 2008, 10:1724-1727.[13] Wang Y L, Zhao Y Q, Xu C L. May 3D nickel foam electrode be the promising choice for supercapacitors [J]. Journal of Solid State Electrochemistry, 2012, 16:829-834.[14] Medway S L, Lucas C A, Kowal A, et al. In situ studies of the oxidation of nickel electrodes in alkaline solution [J]. Journal of Electroanalytical Chemistry,2006, 587: 172-181.[15] Zheng G Y, Hu L B, Wu H, et al. Paper supercapacitors by a solvent-free drawing method [J]. Energy & Environmental Science, 2011, 4: 3368-3373.[16] Li R Z, Ren X, Zhang F, et al. Synthesis of Fe3O4@SnO2 core-shell nanorod film and its application as a thin-film supercapacitor electrode [J]. Chemical Communications, 2012, 48: 5010-5012.[17] Lu X H, Wang G M, Zhai T, et al. Hydrogenated TiO2 nanotube arrays for supercapacitors [J]. Nano Letters, 2012, 12: 1690-1696.[18] Balacha J, Brunob M M, Cotella N G, et al.Electrostatic self-assembly of hierarchical porous carbon microparticles [J]. Journal of Power Sources, 2012,199: 386-394.[19] Hu L B, Pasta M, Mantia F L, et al. Stretchable,porous, and conductive energy textiles [J]. Nano Letters, 2010, 10: 708-714.[20] Jost K, Perez C R, Mcdonough J K, et al. Carbon coated textiles for flexible energy storage [J]. Energy & Environmental Science, 2011, 4: 5060-5067.[21] Toupin M, Brousse T, B′elanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor [J]. Chemistry of Materials, 2004,16: 3184-3190. |