[1] Guo C P, Du Z M. Thermodynamic assessment of the La-Mg system [J]. Journal of Alloys and Compounds, 2004, 385(1-2): 109-113. [2] Wang L, Wang X H, Chen L X, et al. Effects of ballmilling time and Bi2O3 addition on electrochemical performance of ball-milled La2Mg17+200wt.%Ni composites [J]. Journal of Alloys and Compounds, 2006, 416(1-2): 193-198. [3] Dong Z W, Ma L Q, Wu Y M, et al. Microstructure and electrochemical hydrogen storage characteristics of (La0.7Mg0.3)1xCexNi2.8Co0.5 (x = 0—0.20) electrode alloys [J]. International Journal of Hydrogen Energy, 2011, 36(4): 3016-3021. [4] Zhang Q A, Wang C C, Si T Z. Effect of the partial substitution of Mg by Al on the crystal structure and hydrogenation behavior of La2Mg17 [J]. Rare Metals,2007, 26(4): 347-351. [5] Wang Y, Gao X P, Lu ZW, et al. Effects of metal oxides on electrochemical hydrogen storage of nanocrystalline LaMg12-Ni composites [J]. Electrochim Acta,2005, 50(11): 2187-2191. [6] Wang X L, Zhang Y H, Zhao D L, et al. Effects of Cr addition on the microstructures and electrochemical performances of La-Mg-Ni system (PuNi3-type) hydrogen storage alloy [J]. Journal of Alloys and Compounds,2007, 446-447: 625-629. [7] Smardz L, Jurczyk M, Smardz K, et al. Electronic structure of nanocrystalline and polycrystalline hydrogen storage materials [J]. Renewable Energy,2008, 33(2): 201-210. [8] Dong X P, L¨u F X, Zhang Y H, et al. Effect of La/Mg on the structure and electrochemical performance of La-Mg-Ni system hydrogen storage electrode alloy [J]. Materials Chemistry and Physics, 2008,108(2-3): 251-256. [9] Wang L, Wang X H, Chen L X, et al. Effect of ball-milling time on the electrochemical performance of ball-milled LaMg11Ni+200wt.%Ni composite [J]. Journal of Alloys and Compounds, 2005, 403(1-2): 357-362. [10] Yan Xin-chun, Liu Zi-li, Liu Xin-bo. Electrochemical properties of LaMg11Zr+Ni composite [J]. Electrochemistry, 2008, 14(4): 415-417 (in Chinese). [11] Wang L, Wang X H, Chen L X, et al. Electrochemical performance of CeMg12 +xwt.%Ni (x = 180–220) composites prepared by mechanical grinding [J]. International Journal of Hydrogen Energy, 2006, 31(7):919-923. [12] Liu Zi-li, Yan Xin-chun. Effect of boron addition on electrochemical properties of amorphous LaMg11Zr+200%Ni alloy [J]. CIESC Journal, 2009, 60(10): 2656-2660 (in Chinese). [13] Liao B, Lei Y Q, Chen L X, et al. Effect of the La/Mg ratio on the structure and electrochemical properties of LaxMg3?xNi9(x = 1.6—2.2) hydrogen storage electrode alloys for nickel-metal hydride batteries [J]. Journal of Power Sources, 2004, 129(2): 358-367. [14] Suryanarayana C, Lvanov E, Boldyrev V V. The science and technology of mechanical alloying [J]. Materials Science and Engineering A, 2001, 304-306:151-158. [15] Feng Yan, Jiao Li-fang, Yuan Hua-tang, et al. Preparation and electrochemical characteristics of amorphous Mg0.9Ti0.1Ni1xCox(x = 0.05, 0.1, 0.15, 0.2)alloys [J]. Acta Chimica Sinica, 2006, 64(5): 423-427(in Chinese). [16] Zhang Y H, Han X Y, Li B W, et al. Effects of substituting Mg with Zr on the electrochemical characteristics of Mg2Ni-type electrode alloys prepared by mechanical alloying [J]. Materials Characterization, 2008, 59(4): 390-396. [17] Guo J, Huang D, Li G X, et al. Effect of La/Mg on the hydrogen storage capacities and electrochemical performances of La-Mg-Ni alloys [J]. Materials Science and Engineering B, 2006, 131(1-3): 169-172. [18] Liu Y F, Pan H G, Gao M X, et al. Function of Al on the cycling behavior of the La-Mg-Ni-Co-type alloy electrodes [J]. International Journal of Hydrogen Energy, 2008, 33(1): 124-133. [19] Yuan H J, An Y, Xu G H, et al. Hydriding behavior of magnesium-based hydrogen storage alloy modified by mechanical ball-milling [J]. Materials Chemistry and Physics, 2004, 83(2-3): 340-344.
|