[1] Hughes G E, Cresswell M J. A new introduction to modal logic [M]. London, UK: Routledge, 1996.[2] Blackburn P, Derijke M, Venema Y. Modal logic [M]. London, UK: Cambridge University Press, 2001.[3] Huynh V N, Nakamori Y, Ho T B, et al. A context model for fuzzy concept analysis based upon modal logic [J]. Information Sciences, 2004, 160(1-4): 111-129.[4] Fitting M C. Many-valued modal logics [J]. Fundamenta Informaticae, 1992, 15: 235-254.[5] Fitting M C. Many-valued modal logics II [J]. Fundamenta Informaticae, 1992, 17: 55-73.[6] Maruyama Y. Algebraic study of lattice-valued logic and lattice-valued modal logic [J]. Lecture Notes in Computer Science, 2009, 5378: 170-184.[7] Wang Guo-jun, Shi Hui-xian. Lattice-valued modal propositional logic and its completeness [J]. SCIENCE CHINA: Information Science, 2011, 41(1): 66-76 (inChinese).[8] Xu Yang. Lattice implication algebras [J]. Journal of Southwest Jiaotong University, 1993(1): 20-27 (in Chinese).[9] Xu Y, Qin K Y. On filters of lattice implication algebras [J]. Journal of Fuzzy Mathematics, 1993, 1(2):251-260.[10] Xu Y, Qin K Y, Roh E H. A first order lattice-valued logic system. I. Semantic [J]. Journal of Fuzzy Mathematics, 2001, 9: 969-976.[11] Xu Y, Song Z M, Qin K Y, et al. Syntax of L-valued first order logic Lvfl [J]. Multiple Valued Logic, 2001,7(3-4): 213-257.[12] Xu Y, Ruan D, Kerre E E, et al. α-resolution principle based on lattice-valued first order logic LF(X) [J].Information Sciences, 2001, 132(1-4): 221-239.[13] Li Wen-jiang. Generalized lattice-valued modal logic system and resolution automated reasoning based on lattice implication algebras [D]. Chengdu: IntelligentControl Development Center, Southwest Jiaotong University,2002(in Chinese).[14] Li W J, Xu Y. On semantic of L-valued modal propositional logic LMP(X) [J]. Journal of Fuzzy Mathematics,2002, 10(4): 939-947.[15] Xu Y, Ruan D, Qin K Y, et al. Lattice-valued logic [M]. Berlin, Germany: Springer-Verlag, 2003. |