1 Afentakis P, Gavish B, Karmarkar U. Computationally efficientoptimal solutions to the lot-sizing problem in multistage assemblysystems [J]. Management Science, 1984, 30(2): 223-239.2 Barany I, Van Roy T J, Wolsey L A. Uncapacitated lotsizing: The convex hull of solutions [J]. MathematicalProgramming Studies, 1984, 22: 32-43.3 Ball M O, Magnanti T L, Monma C L, et al. Handbooks inoperations research and management science: Network routing [M].Amsterdam: Elsevier, 1995.4 Crowston W B, Wagner M H. Dynamic lot size models formulti-stage assembly systems [J]. Management Science, 1973, 20(1): 14-21.5 Constantino M. Lower bounds in lot-sizing models: A polyhedral study[J]. Mathematics of Operations Research, 1998, 23(1):101-118.6 Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by acolony of cooperating agents [J]. IEEE Trans on System, Man,and Cybernetics, 1996, 26(1): 28-41.7 Dellaert N, Jeunet J. Solving large unconstrained multilevellot-sizing problems using a hybrid genetic algorithm [J]. International Journal of Production Research, 2000, 38(5):1083-1099.8 Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]// Proceedings of 6th International Symposium on MicroMachine and Human Science. Nagoya, Japan: IEEE, 1995: 39-43.9 Eppen G D, Martin R K. Solving multi-item capacitated lot-sizingproblems using variable redefinition [J]. Operations Research,1987, 35(6): 832-848.10 Goldberg D E. Genetic algorithms in search, optimization and machinelearning [M]. Boston: Addison-Wesley, 1989.11 Glover F, Kelly J P, Laguna M. Genetic algorithm and Tabu search:Hybrid for optimizations [J]. Computers \& OperationsResearch, 1995, 22(1): 111-134.12 Holland J H. Adoption in natural and artificial systems [M].Michigan: The University of Michigan Press, 1975.13 Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulatedannealing [J]. Science, 1983, 220(4598): 671-680.14 Karmarkar U S, Schrage L. The deterministic dynamic product cyclingproblem [J]. Operations Research, 1985, 33(2): 326-345.15 Kennedy J, Eberhart R. Particle swarm optimization [C]// Proceedings of IEEE International Conference on Neural Networks.Perth, WA, Australia: IEEE, 1995: 1942-1948.16 Kennedy J, Spears W M. Matching algorithms to problems: Anexperimental tests of the particle swarm and some genetic algorithmson the multimodal problem generator [C]// Proceedings of IEEEInternational Conference on Evolutionary Computation. Anchorage,USA: IEEE, 1998: 78-83.17 Kaku I, Xiao Y, Xia G. The deterministic annealing algorithms forvehicle routing problems [J]. International Journal of SmartEngineering System Design, 2003, 5(4): 327-339.18 Lin F, Kao C, Hsu C. Applying the genetic approach to simulatedannealing in solving some NP-hard problems [J]. IEEETransactions on Systems, Man and Cybernetics, 1993, 23(6):1752-1766.19 Millonas M M. Swarms, phase transition, and collective intelligence [M]. Boston: Addison-Wesley, 1994.20 Mitchell M. An introduction to genetic algorithms [M]. Cambridge:MIT Press, 1996.21 Pochet Y, Wolsey L A. Lot size model with backlogging: Strongformulations and cut planes [J]. Mathematical Programming,1988, 40(1-3): 317-335.22 Rutenbar R A. Simulated annealing algorithms: An overview [J]. IEEE Circuits and Devices Magazine, 1989, 5(1): 19-26.23 Su J, Hu A, He Z. Solving a kind of nonlinear programming problemsvia analog neural networks [J]. Neurocomputing, 1998, 18(1-3): 1-9.24 Shi Y, Eberhart R C. A modified particle swarm optimizer [C]// Proceedings of IEEE International Confeence on EvolutionaryComputation. Anchorage, USA: IEEE, 1998: 69-73.25 Suganthan P N. Particle swarm optimizer with neighborhood operator[C]// Proceedings of the Congress on Evolutionary Computation.Washington, USA: IEEE, 1999: 1958-1962.26 Shi Y, Eberhart R C. Parameter selection in particle swarmoptimization [C]// Proceedings of the 7th Annual Conference onEvolutionary Programming. Berlin, Germany: Springer-Verlag, 1998:591-600.27 Tang O. Simulated annealing in lot sizing problems [J]. International Journal of Production Economics, 2004, 88(2):173-181.28 Veral E A, Laforge R L. The performance of a simple incrementallot-sizing rule in a multilevel inventory environment [J]. Decision Sciences, 1985, 16(1): 57-72.29 Wolsey L A. Uncapacitated lot-sizing problems with start-up costs[J]. Operations Research, 1989, 37(5): 741-747.30 Wolsey L A. Solving multi-item lot-sizing problems with a MIP solverusing classification and reformulation [J]. ManagementScience, 2002, 48(12): 1587-1602.31 Wagner H M, Whitin T M. Dynamic version of the economic lot sizemodel [J]. Management Science, 1958, 5(1): 89-96.32 Yelle L E. Materials requirements lot sizing: A multilevel approach[J]. International Journal of Production Research, 1979, 17(3): 223-232.33 Zangwill W I. Minimum concave cost flows in certain networks [J]. Management Science, 1968, 14(7): 429-450.34 Zangwill W I. A backlogging model and a multi-echelon model of adynamic economic lot size production system---A network approach[J]. Management Science, 1969, 15(9): 506-527. |