J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (6): 1289-1298.doi: 10.1007/s12204-023-2693-9
• • 上一篇
收稿日期:2023-04-18
接受日期:2023-07-21
出版日期:2025-11-21
发布日期:2023-12-21
秦广菲1,张怀新1, 2,李达特1
Received:2023-04-18
Accepted:2023-07-21
Online:2025-11-21
Published:2023-12-21
摘要: 水翼涡激振动关系到水力机械和海洋工程的结构安全与辐射噪声,因此开展不同工况下水翼振动特性研究具有重要的实际意义。基于数值模拟方法,计算了在俯仰方向上弹性支撑的钝尾缘水翼的涡激振动响应问题,探究了结构固有简约频率、质量比、初始攻角和雷诺数对振动特性的影响。结果表明,随着结构固有频率的变化,在特定的结构固有频率范围内发生了锁频现象。此外,随着质量比的增加,锁频范围减小。当初始攻角从0°增加到6°,锁频范围随之减小。三种雷诺数下(6×105, 9×105, 12×105),锁频范围几乎保持不变。此外,对于给定的结构固有频率值,通过改变质量比、初始攻角以及雷诺数可以有效减小振幅。
中图分类号:
. 钝尾缘水翼单自由度涡激振动与锁频特性研究[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1289-1298.
QIN Guangfei, ZHANG Huaixin, LI Date. Vortex-Induced Vibration and Frequency Lock-In of an Elastically Suspended Hydrofoil with Blunt Trailing Edge[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1289-1298.
| [1] KIM T, HUR J, LEE H. Numerical and experimental analysis of a singing propeller having blunt trailing edges [J]. Journal of Ship Research, 2020, 64(3): 234-249. [2] WANG Y, CAO L L, ZHAO G S, et al. Experimental investigation of the effect of propeller characteristic parameters on propeller singing [J]. Ocean Engineering, 2022, 256: 111538. [3] KHALAK A, WILLIAMSON C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping [J]. Journal of Fluids and Structures, 1999, 13(7/8): 813-851. [4] WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations [J]. Annual Review of Fluid Mechanics, 2004, 36: 413-455. [5] SARPKAYA T. A critical review of the intrinsic nature of vortex-induced vibrations [J]. Journal of Fluids and Structures, 2004, 19(4): 389-447. [6] BEARMAN P W. Circular cylinder wakes and vortex-induced vibrations [J]. Journal of Fluids and Structures, 2011, 27(5/6): 648-658. [7] BEARMAN P W. Vortex shedding from oscillating bluff bodies [J]. Annual Review of Fluid Mechanics, 1984, 16: 195-222. [8] FENG C C. The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders[D]. Vancouver: The University of British Columbia, 1968. [9] MA C H, ZHAO W W, WAN D C. Numerical investigations of the flow-induced vibration of a three-dimensional circular cylinder with various symmetric strips attached [J]. Physics of Fluids, 2022, 34(6): 065102. [10] ZHANG W W, LI X T, YE Z Y, et al. Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers [J]. Journal of Fluid Mechanics, 2015, 783: 72-102. [11] AUSONI P, FARHAT M, ESCALER X, et al. Cavitation influence on von Kármán vortex shedding and induced hydrofoil vibrations [J]. Journal of Fluids Engineering, 2007, 129(8): 966-973. [12] ZOBEIRI A, AUSONI P, AVELLAN F, et al. How oblique trailing edge of a hydrofoil reduces the vortex-induced vibration [J]. Journal of Fluids and Structures, 2012, 32: 78-89. [13] DUCOIN A, ANDRÉ ASTOLFI J, GOBERT M L. An experimental study of boundary-layer transition induced vibrations on a hydrofoil [J]. Journal of Fluids and Structures, 2012, 32: 37-51. [14] WU Q, WANG Y N, WANG G Y. Experimental investigation of cavitating flow-induced vibration of hydrofoils [J]. Ocean Engineering, 2017, 144: 50-60. [15] DE LA TORRE O, ESCALER X, EGUSQUIZA E, et al. Experimental investigation of added mass effects on a hydrofoil under cavitation conditions [J]. Journal of Fluids and Structures, 2013, 39: 173-187. [16] ZENG Y S, ZHANG M D, DU Y X, et al. Influence of attack angle on the hydrodynamic damping characteristic of a hydrofoil [J]. Ocean Engineering, 2021, 238: 109692. [17] YAO Z F, WANG F J, DREYER M, et al. Effect of trailing edge shape on hydrodynamic damping for a hydrofoil [J]. Journal of Fluids and Structures, 2014, 51: 189-198. [18] MOSALLEM M M. Numerical and experimental investigation of beveled trailing EDGE flow fields [J]. Journal of Hydrodynamics, 2008, 20(3): 273-279. [19] HU J A, WANG Z B, ZHAO W, et al. Numerical simulation on vortex shedding from a hydrofoil in steady flow [J]. Journal of Marine Science and Engineering, 2020, 8(3): 195. [20] LIU Y Q, WU Q, HUANG B A, et al. Dynamic response and stability of a flexible foil with special emphasis on the flutter mechanism via the reduced-order model [J]. Ocean Engineering, 2021, 237: 109601. [21] HU J A, NING X S, SUN S L, et al. Fluid-structure coupled analysis of flow-induced vibrations in three dimensional elastic hydrofoils [J]. Marine Structures, 2022, 84: 103220. [22] KANG W, LIANG Q, ZHOU L, et al. Numerical investigation on torsional mode self-excited vibration of guide vane in a reversible pump-turbine during pump mode’s starting up [J]. Journal of Applied Fluid Mechanics, 2022, 15(6): 1789-1799. [23] LIANG Q W, KANG W Z, ZHOU L J, et al. Numerical investigation of the flow regime in the vanes and the torsional self-excited vibration of guide vane in the pump mode of a reversible pump-turbine [J]. Processes, 2022, 10(11): 2314. [24] ZENG Y S, YAO Z F, HUANG B, et al. Numerical studies of the hydrodynamic damping of a vibrating hydrofoil in torsional mode [J]. Journal of Hydrodynamics, 2021, 33(2): 347-360. [25] FISCHER R. Singing propellers—Solutions and case histories [J]. Marine Technology and SNAME News, 2008, 45(4): 221-227. [26] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows [C]// 30th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1992: AIAA1992-439. [27] HU J A, WANG Z B, CHEN C G, et al. Vortex shedding simulation of hydrofoils with trailing-edge truncation [J]. Ocean Engineering, 2020, 214: 107529. [28] QIN G F, ZHANG H X, LI D T. Numerical study on vortex induced vibration of hydrofoils with trailing-edge truncation [J]. Ocean Engineering, 2023, 275: 114083. [29] CHAE E J, AKCABAY D T, YOUNG Y L. Dynamic response and stability of a flapping foil in a dense and viscous fluid [J]. Physics of Fluids, 2013, 25(10): 104106. |
| [1] | 赵光义, 张萌萌, 付世晓, 许玉旺, 任浩杰, 白英利. 均匀流作用下并联悬垂双取水管涡激振动载荷特性试验研究[J]. 上海交通大学学报, 2025, 59(8): 1067-1080. |
| [2] | 张方海. 移动式井口平台外输海管登临方案浅析[J]. 海洋工程装备与技术, 2025, 12(2): 92-95. |
| [3] | 付雪鹏, 付世晓, 张萌萌, 许玉旺, 任浩杰, 孙童晓. 双向剪切流作用下柔性立管平均阻力特性研究[J]. 上海交通大学学报, 2024, 58(11): 1637-1643. |
| [4] | 郑诚毅, 杜旭之, 东乔天, 杨志刚, 熊兵, 徐毅, 吴凌昊, 金哲岩. 不同参数对带粗糙冰翼型绕流流场结构影响的实验研究[J]. 上海交通大学学报, 2023, 57(9): 1221-1230. |
| [5] | 邹琳, 闫豫龙, 陶凡, 柳迪伟, 郑云龙. 波浪锥型风力俘能结构能量转换效率[J]. 上海交通大学学报, 2023, 57(8): 1067-1077. |
| [6] | 季鹏翔, 艾万政, 丁天明. 孔板后压力恢复长度的影响因数定量关系[J]. 上海交通大学学报, 2022, 56(8): 1051-1056. |
| [7] | 胡济珠, 周俊, 李云云. 基于有机/无机复合材料的航天环境下高效热电转换技术研究 [J]. 空天防御, 2020, 3(2): 72-75. |
| [8] | 张波涛,朱晔晨,梅勇,龚圣捷. 平直条带流致振动特性实验及其数值模拟研究[J]. 上海交通大学学报, 2020, 54(1): 100-105. |
| [9] | 袁昱超,薛鸿祥,唐文勇. 计及平台垂荡的立管涡激振动模拟与试验验证[J]. 上海交通大学学报(自然版), 2019, 53(4): 480-487. |
| [10] | 姚慧岚, 张怀新. 较低雷诺数下ITTC尺度效应换算方法的改进[J]. 上海交通大学学报, 2019, 53(1): 35-41. |
| [11] | 端木玉, 陈建平, 万德成. 深海串列立管涡激振动的干涉分析[J]. 海洋工程装备与技术, 2019, 6(1): 438-443. |
| [12] | 赵 帆, 刘 洋, 时 晨. 仙人掌型截面圆柱体群涡激振动响应的水槽试验研究[J]. 海洋工程装备与技术, 2018, 5(增刊): 19-25. |
| [13] | 高云1, 2,郑文龙1,熊友明1,邹丽3. 不同表面粗糙度下圆柱体涡激振动响应特性数值研究[J]. 上海交通大学学报, 2018, 52(4): 419-428. |
| [14] | 刘玉玺, 黄怀州, 刘钊. 张力腿平台在位期间张力腿涡激振动疲劳分析[J]. 海洋工程装备与技术, 2018, 5(3): 186-190. |
| [15] | 陈刚, 程永明, 徐爱进, 王钰涵. 中国南海Spar平台悬链线立管的涡激振动研究[J]. 海洋工程装备与技术, 2018, 5(3): 181-185. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||