|
[1] ULLAH M A, KESHAVARZ R, ABOLHASAN M, et al. A
review on antenna technologies for ambient RF energy harvesting and wireless
power transfer: Designs, challenges and applications [J]. IEEE Access, 2022, 10:
17231-17267.
[2]
MACH P,
BECVAR Z. Mobile edge computing: A survey on architecture and computation
offloading [J]. IEEE Communications
Surveys & Tutorials, 2017, 19(3):
1628-1656.
[3] TALEB T, DUTTA S, KSENTINI A, et al.
Mobile edge computing potential in making cities smarter [J]. IEEE Communications Magazine, 2017, 55(3): 38-43.
[4] HUANG M T, YI Y H, ZHANG G L. Service caching and
task offloading for mobile edge computing-enabled intelligent connected vehicles
[J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(5):
670-679.
[5] ZHANG T, CHEN W. Computation
offloading in heterogeneous mobile edge computing with energy harvesting [J]. IEEE Transactions on Green Communications
and Networking, 2021, 5(1):
552-565.
[6] XIA S C, YAO
Z X, LI Y, et al. Online distributed offloading and
computing resource management with energy harvesting for heterogeneous
MEC-enabled IoT [J]. IEEE Transactions on
Wireless Communications, 2021, 20(10):
6743-6757.
[7] LI M L, ZHOU
X B, QIU T, et al. Multi-relay assisted computation
offloading for multi-access edge computing systems with energy harvesting [J]. IEEE Transactions on Vehicular Technology,
2021, 70(10): 10941-10956.
[8] TENG Y L, CHENG
K, ZHANG Y, et al. Mixed-timescale joint computational offloading and wireless
resource allocation strategy in energy harvesting multi-MEC server systems [J]. IEEE Access, 2019, 7: 74640-74652.
[9]
MAO S,
LENG S P, YANG K, et al. Fair energy-efficient
scheduling in wireless powered full-duplex mobile-edge computing systems [C]// 2017 IEEE Global Communications Conference.
Singapore: IEEE, 2017: 1-6.
[10] FANG P, ZHAO Y S, LIU Z C, et al. Resource
allocation strategy for MEC system based on VM migration and RF energy
harvesting [C]// 2020 IEEE 91st Vehicular Technology Conference
(VTC2020-Spring). Antwerp, Belgium: IEEE, 2020: 1-6.
[11] HE X Y, CHEN
Y, CHAI K K. Delay-aware energy efficient computation offloading for energy
harvesting enabled fog radio access networks [C]// 2018 IEEE 87th Vehicular Technology Conference (VTC-Spring). Porto,
Portugal: IEEE, 2018: 1-6.
[12]
ZENG Y,
ZHANG R, LIM T J. Wireless communications with unmanned aerial vehicles:
Opportunities and challenges [J]. IEEE
Communications Magazine, 2016, 54(5):
36-42.
[13]
PHAM Q
V, LE M, HUYNH-THE T, et al. Energy-efficient federated learning over
UAV-enabled wireless powered communications [J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 4977-4990.
[14]
FENG W M, TANG J, ZHAO N, et al. Hybrid
beamforming design and resource allocation for UAV-aided wireless-powered
mobile edge computing networks with NOMA [J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3271-3286.
[15]
LIU Y,
XIONG K, NI Q, et al. UAV-assisted wireless powered cooperative mobile edge
computing: Joint offloading, CPU control, and trajectory optimization [J]. IEEE Internet of Things Journal, 2020, 7(4): 2777-2790.
[16]
ZHOU F H, WU Y P, HU R Q, et al. Computation rate
maximization in UAV-enabled wireless-powered mobile-edge computing systems [J]. IEEE Journal on Selected Areas in
Communications, 2018, 36(9):
1927-1941.
[17]
HU X Y, WONG K K, YANG K. Wireless powered
cooperation-assisted mobile edge computing [J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2375-2388.
[18] JI L Y, GUO
S T. Energy-efficient cooperative resource allocation
in wireless powered mobile edge computing [J]. IEEE Internet of Things Journal, 2019, 6(3): 4744-4754.
[19] HE X M,
ZHAO Y S, XU Z H, et al. Resource allocation strategy for UAV-assisted
non-linear energy harvesting MEC system [C]// 2022 IEEE 95th Vehicular
Technology Conference: (VTC2022-Spring). Helsinki, Finland: IEEE, 2022:
1-7.
[20] WANG H C,
WANG J L, DING G R, et al. Resource allocation for energy
harvesting-powered D2D communication underlaying UAV-assisted networks [J]. IEEE Transactions on Green Communications
and Networking, 2018, 2(1):
14-24.
[21] BOSHKOVSKA E, NG D W K,
ZLATANOV N, et al. Practical non-linear energy
harvesting model and resource allocation for SWIPT systems [J]. IEEE Communications Letters, 2015, 19(12): 2082-2085.
[22]
VISSER
H J, VULLERS R J M. RF energy harvesting and transport for wireless sensor
network applications: Principles and requirements [J]. Proceedings of the IEEE, 2013, 101(6):
1410-1423.
[23]
QIN A
K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy
adaptation for global numerical optimization [J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398-417.
[24]
CHEN X,
LIU Z Y, CHEN Y, et al. Mobile edge computing
based task offloading and resource allocation in 5G ultra-dense networks [J]. IEEE Access, 2019, 7: 184172-184182.
[25] 3GPP. Base station (BS)
radio transmission and reception (FDD) [S]. France: 3GPP, 2008.
[26]
WANG Y J, WANG Y H, ZHOU F H, et al. Resource allocation in
wireless powered cognitive radio networks based on a practical non-linear
energy harvesting model [J]. IEEE Access,
2017, 5: 17618-17626.
[27]
DU Y,
YANG K, WANG K Z, et al. Joint resources
and workflow scheduling in UAV-enabled wirelessly-powered MEC for IoT systems [J]. IEEE Transactions on Vehicular Technology,
2019, 68(10): 10187-10200.
|