J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (1): 187-196.doi: 10.1007/s12204-023-2620-0
朱晔1,任东1,张爽2,曹倩3
收稿日期:
2022-06-30
接受日期:
2022-10-06
出版日期:
2025-01-28
发布日期:
2025-01-28
ZHU Ye1 (朱晔), REN Dong1 (任东),ZHANG Shuang2* (张爽), CAO Qian3* (曹倩)
Received:
2022-06-30
Accepted:
2022-10-06
Online:
2025-01-28
Published:
2025-01-28
摘要: 由于缺少人体躲避分析,矫形器在矫形时不能准确施加矫形力,致使矫形效果不佳。因此研究人体主动躲避能力与施力之间的关系,从而实现矫形力的精准加载。首先基于CT数据建立高精度的侧弯模型,分析矫形力与Cobb角之间的关系;然后选取9名受试者按体重指数分组进行躲避能力试验,拟合出不同群体的躲避函数;最后通过躲避函数修正矫形力的施加。结果显示:偏胖群体的躲避能力最大,其次是标准群体、偏瘦群体;数值模拟分析矫形力60 N时,Cobb角由33.77°减少为20°,由躲避函数可得标准群体在50 N时躲避能力为20.28%,主动躲避掉10.14 N,因此施加50 N时,实际产生了60.14 N,能够达到数值模拟分析60 N时的矫形效果。躲避效应可将人体主动因素考虑到矫形中,实现矫形力更加准确的施加,为临床医师在矫形中提供数据参考。
中图分类号:
朱晔1, 任东1, 张爽2, 曹倩3. 考虑人体躲避效应的脊柱侧弯矫形力生物力学分析[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 187-196.
ZHU Ye1 (朱晔), REN Dong1 (任东), ZHANG Shuang2 (张爽), CAO Qian3 (曹倩).
[1] DREISCHARF M, SHIRAZI-ADL A, ARJMAND N, et al. Estimation of loads on human lumbar spine: A review of in vivo and computational model studies [J]. Journal of Biomechanics, 2016, 49(6): 833-845. [2] ZHANG A P, LIU X, LIU Z F, et al. Manufacture of customized orthosis in adolescent idiopathic scoliosis and comfort evaluation based on 3D printing [J]. Journal of Beijing University of Technology, 2017, 43(4): 518-525 (in Chinese). [3] ZHANG C, ZHAO Y, DU X Y, et al. Biomechanical analysis of the lumbar spine and pelvis in adolescent idiopathic scoliosis with lumbar major curve [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(8): 1155-1161 (in Chinese). [4] WANG H, TETTEROO D, CHRIS ARTS J J, et al. Quality of life of adolescent idiopathic scoliosis patients under brace treatment: A brief communication of literature review [J]. Quality of Life Research, 2021, 30(3):703-711. [5] BARBA N, IGNASIAK D, VILLA T M T, et al. Assessment of trunk muscle activation and intervertebral load in adolescent idiopathic scoliosis by musculoskeletal modelling approach [J]. Journal of Biomechanics,2021, 114: 110154. [6] RASMUSSEN J, T?RHOLM S, DE ZEE M. Computational analysis of the influence of seat pan inclination and friction on muscle activity and spinal joint forces [J]. International Journal of Industrial Ergonomics,2009, 39(1): 52-57. [7] LI D. Analysis of the relativity of the material attribute, modality attribute, configuration attribute of lumber based on the 3D modality data of MDCT and the fracture risk using the finite element method [D]. Changchun: Jilin University, 2011 (in Chinese). [8] MORGAN E F, BAYRAKTAR H H, KEAVENY T M. Trabecular bone modulus–density relationships depend on anatomic site [J]. Journal of Biomechanics, 2003, 36(7): 897-904. [9] RHO J Y, KUHN-SPEARING L, ZIOUPOS P. Mechanical properties and the hierarchical structure of bone [J]. Medical Engineering & Physics, 1998, 20(2): 92-102. [10] JIA S W, ZHANG S X, FAN S C, et al. Finite element analysis on scoliosis lumbosacral vertebral structure and its deformation trend [J]. Journal of Medical Biomechanics, 2017, 32(3): 235-241 (in Chinese). [11] NIE W Z. Research on thoracolumbar biomechanical modelling and application — the basic issue of mechanical visual human of China [D]. Shanghai: Shanghai Jiao Tong University, 2009 (in Chinese). [12] GOEL V K, KONG W, HAN J S, et al. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles [J]. Spine, 1993, 18(11): 1531-1541. [13] YAMAMOTO I, PANJABI M M, CRISCO T, et al. Three-dimensional movements of the whole lumbar spine and lumbosacral joint [J]. Spine, 1989, 14(11): 1256-1260. [14] BUSSCHER I, VAN DIEEN J H, KINGMA I, et al. Biomechanical characteristics of different regions of the human spine: An in vitro study on multilevel spinal segments [J]. Spine, 2009, 34(26): 2858-2864. [15] SUN W X. Predictors of bracing failure in patients with adolescent idiopathic scoliosis & application of grayscale inversion radiographic view in spine measurement [D] Nanjing: Nanjing University, 2017 (in Chinese). [16] ZAFARPARANDEH I, ERBULUT D U, LAZOGLU I, et al. Development of a finite element model of the human cervical spine [J]. Turkish Neurosurgery, 2014, 24(3): 312-318. [17] COBETTO N, AUBIN C E, CLIN J, et al. Braces optimized with computer-assisted design and simulations are lighter, more comfortable, and more efficient than plaster-cast braces for the treatment of adolescent idiopathic scoliosis [J]. Spine Deformity, 2014, 2(4): 276-284. [18] TAJDARI M, PAWAR A, LI H Y, et al. Image-based modelling for Adolescent Idiopathic Scoliosis: Mechanistic machine learning analysis and prediction [J]. Computer Methods in Applied Mechanics and Engineering, 2021, 374: 113590. [19] NEGRINI S, GRIVAS T B, KOTWICKI T, et al. Why do we treat adolescent idiopathic scoliosis? What we want to obtain and to avoid for our patients. SOSORT 2005 Consensus paper [J]. Scoliosis, 2006, 1: 4. [20] Du Q. Study of rehabilitation evaluation and treatment of adolescent idiopathic scoliosis[D]. Shanghai: Shanghai University of Sport, 2014 (in Chinese). [21] LI M, WONG M S, LUK K D K, et al. Time-dependent response of scoliotic curvature to orthotic intervention: When should a radiograph be obtained after putting on or taking off a spinal orthosis? [J]. Spine, 2014,39(17): 1408-1416. |
[1] | 叶鹏,富荣昌,王召耀. 不同节段的颈椎前路椎间盘切除和融合术中植入Cage-Plate或Zero-P融合器系统后相邻节段生物力学分析[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 166-174. |
[2] | 许苑晶, 高海峰, 吴云成, 柳毅浩, 张子砚, 黄承兰, 王赞博, 刘同有, 王彩萍, 缪伟强, 王金武. 定制式增材制造膝关节矫形器间室减荷效果的有限元分析[J]. 上海交通大学学报, 2023, 57(5): 560-569. |
[3] | 李健1, 2,朱晔1,关天民1. 考虑肌肉因素的脊柱侧弯矫正的数值模拟方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 486-. |
[4] | 周俊帆,罗云. 基于重力驱动的坐姿矫正机构原理及其设计[J]. 上海交通大学学报(自然版), 2016, 50(02): 182-187. |
[5] | 黄辉祥1,汤文成1,吴斌2,严斌3. 基于超弹性模型的牙周膜力学行为数值模拟[J]. 上海交通大学学报(自然版), 2014, 48(09): 1263-1267. |
[6] | 徐明峰,朱良凡,周文选,罗云. 新型免载方式的膝关节矫形器设计与评价[J]. 上海交通大学学报(自然版), 2014, 48(02): 181-186. |
[7] | 崔雯,王冬梅,王成焘,黄庆丰,张富强. 可摘局部义齿不同加载条件下的三维有限元分析 [J]. 上海交通大学学报(自然版), 2010, 44(11): 1588-1594. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||