[1] KIM S H, KANG C Y, BANG K S. Weld metal impact toughness of electron beam welded 9% Ni steel [J]. Journal of Materials Science, 2001, 36(5): 119-1200.
[2] KHODIR S, SHIBAYANAGI T, TAKAHASHI M, et al. Microstructural evolution and mechanical properties of high strength 3—9% Ni-steel alloys weld metals produced by electron beam welding [J]. Materials & Design, 2014, 60: 391-400.
[3] WU Y, CAI Y, SUN D W, et al. Microstructure and properties of high-power laser welding of SUS304 to SA553 for cryogenic applications [J]. Journal of Materials Processing Technology, 2015, 225: 56-66.
[4] QU Z X, XIA L Q, WANG X J. The study on welding technology of 9Ni steel [J]. Materials Science Forum, 2018, 941: 516-523.
[5] MU W D, LI Y Z, CAI Y, et al. Cryogenic fracture toughness of 9%Ni steel flux cored arc welds [J]. Journal of Materials Processing Technology, 2018, 252: 804-812.
[6] KAR J, ROY S K, ROY G G. Influence of beam oscillation in electron beam welding of Ti-6AL-4V [J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9/10/11/12): 4531-4541.
[7] LI R F, ZHANG F, SUN T Z, et al. Investigation of strengthening mechanism of commercially pure titanium joints fabricated by autogenously laser beam welding and laser-MIG hybrid welding processes [J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(1/2/3/4): 377-389.
[8] USHIO M, MATSUDA F. Effect of oxygen on stabilization of arc in 9%Ni-steel GMA welding [J]. Transactions of JWRI, 1978, 7(1): 93-100.
[9] MATSUDA F, USHIO M, SAIKAWA S, et al. GMA welding of 9%Ni-steel with similarly composed nickel alloy wire in helium shielding [J]. Transactions of JWRI, 1981, 10(2): 153-161.
[10] NAKAMURA T, HIRAOKA K. GMA welding of 9% Ni steel in pure argon shielding gas using coaxial multilayer solid wire [J]. Welding in the World, 2013, 57(6): 743-752.
[11] MAHIN K W, MORRIS J W, WATANABE I. A review of the development of ferritic consumables for the welding of 9%-nickel steel: Research in the United States and Japan [M]//Advances in cryogenic engineering materials. Boston: Springer, 1980: 187-199.
[12] EL-BATAHGY A M, GUMENYUK A, GOOK S, et al. Comparison between GTA and laser beam welding of 9%Ni steel for critical cryogenic applications [J]. Journal of Materials Processing Technology, 2018, 261: 193-201.
[13] MO W L, LU S P, LI D Z, et al. Research and development of Ni-based filler wire for key components of nuclear power plant [J]. Transactions of the China Welding Institution, 2014, 35(6): 90-94, 117 (in Chinese).
[14] SCOTTI A, PONOMAREV V, LUCAS W. A scientific application oriented classification for metal transfer modes in GMA welding [J]. Journal of Materials Processing Technology, 2012, 212(6): 1406-1413.
[15] TSAI N S, EAGAR T W. Distribution of the heat and current fluxes in gas tungsten arcs [J]. Metallurgical Transactions B, 1985, 16(4): 841-846.
[16] FAN H G, SHI Y W. Numerical simulation of the arc pressure in gas tungsten arc welding [J]. Journal of Materials Processing Technology, 1996, 61(3): 302-308.
[17] PRAVEEN P, YARLAGADDA P K D V. Meeting challenges in welding of aluminum alloys through pulse gas metal arc welding [J]. Journal of Materials Processing Technology, 2005, 164/165: 1106-1112.
[18] PALANI P K, MURUGAN N. Selection of parameters of pulsed current gas metal arc welding [J]. Journal of Materials Processing Technology, 2006, 172(1): 1-10.
[19] PRAVEEN P, YARLAGADDA P K D V, KANG M J. Advancements in pulse gas metal arc welding [J]. Journal of Materials Processing Technology, 2005, 164/165: 1113-1119.
[20] HERMANS M, OUDEN G. Process behavior and stability in short circuit gas metal arc welding [J]. Welding Journal, 1999, 78(4): 137-141.
[21] LIN Q, LI X, SIMPSON S W. Metal transfer measurements in gas metal arc welding [J]. Journal of Physics D: Applied Physics, 2001, 34(3): 347-353.
[22] CAO Z N, DONG P S. Modeling of GMA weld pools with consideration of droplet impact [J]. Journal of Engineering Materials and Technology, 1998, 120(4): 313-320.
[23] MAMAT S B, TASHIRO S, TANAKA M, et al. Study on factors affecting the droplet temperature in plasma MIG welding process [J]. Journal of Physics D: Applied Physics, 2018, 51(13): 135206.
[24] OGINO Y, HIRATA Y, MURPHY A B. Numerical simulation of GMAW process using Ar and an Ar–CO2 gas mixture [J]. Welding in the World, 2016, 60(2): 345-353.
[25] CAI X Y, LIN S B, MURPHY A B, et al. Influence of helium content on a ternary-gas-shielded GMAW process [J]. Welding in the World, 2018, 62(5): 973-984.
[26] HERTEL M, ROSE S, FüSSEL U. Numerical simulation of arc and droplet transfer in pulsed GMAW of mild steel in argon [J]. Welding in the World, 2016, 60(5): 1055-1061.
[27] YAN Z Y, ZHAO Y, JIANG F, et al. Metal transfer behaviour of CMT-based step-over deposition in fabricating slant features [J]. Journal of Manufacturing Processes, 2021, 71: 147-155.
[28] GAN Z T, LIAN Y P, LIN S E, et al. Benchmark study of thermal behavior, surface topography, and dendritic microstructure in selective laser melting of inconel 625 [J]. Integrating Materials and Manufacturing Innovation, 2019, 8(2): 178-193.
[29] XU W H, DONG C L, ZHANG Y P, et al. Characteristics and mechanisms of weld formation during oscillating arc narrow gap vertical up GMA welding [J]. Welding in the World, 2017, 61(2): 241-248.
[30] YANG C, LIN S. Arc welding base [M]. Harbin: Harbin Institute of Technology Press, 2003 (in Chinese).
|