J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (5): 857-875.doi: 10.1007/s12204-022-2532-4
张康健,胡哲钏,张志强
收稿日期:
2021-07-13
接受日期:
2021-11-16
出版日期:
2024-09-28
发布日期:
2024-09-28
ZHANG Kangjian (张康健), HU Zhechuan (胡哲钏), ZHANG Zhiqiang* (张志强)
Received:
2021-07-13
Accepted:
2021-11-16
Online:
2024-09-28
Published:
2024-09-28
摘要: 全断面隧道掘进机的滚刀布置直接影响其掘进效率。中心滚刀的旋转直径较小,且采用双刃设计,导致其破岩机理和受力特征与单刃滚刀有显著差异。边缘滚刀安装在刀盘的过渡弧上,安装倾角的存在使其运动和受力复杂。以砂岩为研究对象,基于三维颗粒离散元法,分别建立复合式隧道掘进机中心滚刀群和边缘滚刀群的复合破岩模型。全尺寸旋转切削室内试验结果验证了数值模型的正确性。研究了单滚刀的受力特征、相邻滚刀间岩石裂缝的扩展、刀盘的整体力学性能、双刃中心滚刀的载荷特征和布置形式、以及边缘滚刀的安装倾角范围。结果表明:十字形中心滚刀布置可以减少单刀圈的受力和刀盘的整体载荷,有利于隧道掘进机掘进的稳定。建议岩层复合式隧道掘进机的双刃中心滚刀采用十字形布置。为提高刀具的稳定性和使用寿命,建议岩层复合式隧道掘进机最内侧边缘滚刀的安装角度约为9º,最外侧边缘滚刀的安转角度不应超过70º。
中图分类号:
张康健, 胡哲钏, 张志强. 岩层复合式隧道掘进机中心滚刀和边缘滚刀的荷载特征及优化布置[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 857-875.
ZHANG Kangjian (张康健), HU Zhechuan (胡哲钏), ZHANG Zhiqiang (张志强). Load Characteristics and Optimal Layout of Center and Gage Cutters of Rock Formation Compound Tunnel Boring Machine[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 857-875.
[1] ROSTAMI J, CHANG S H. A closer look at the design of cutterheads for hard rock tunnel-boring machines[J]. Engineering, 2017, 3(6): 892-904. [2] ENTACHER M, WINTER G, GALLER R. Cutter force measurement on tunnel boring machinesImplementation at Koralm tunnel [J]. Tunnelling and Underground Space Technology, 2013, 38: 487-496. [3] HUO J Z, SUN W, CHEN J, et al. Disc cutters plane layout design of the full-face rock tunnel boring machine (TBM) based on different layout patterns[J]. Computers & Industrial Engineering, 2011, 61(4):1209-1225. [4] LAN H, XIA Y M, MIAO B, et al. Prediction model of wear rate of inner disc cutter of engineering in Yinsong, Jilin [J]. Tunnelling and Underground Space Technology, 2020, 99: 103338. [5] GENG Q, WEI Z Y, HE F, et al. Comparison of the mechanical performance between two-stage and flatface cutter head for the rock tunnel boring machine(TBM) [J]. Journal of Mechanical Science and Technology, 2015, 29(5): 2047-2058. [6] FANG Y, YAO Z G, XU W H, et al. The performance of TBM disc cutter in soft strata: A numerical simulation using the three-dimensional RBD-DEM coupled method [J]. Engineering Failure Analysis, 2021, 119: 104996. [7] ROSTAMI J. Study of pressure distribution within the crushed zone in the contact area between rock and disccutters [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 57: 172-186. [8] BALCI C. Correlation of rock cutting tests with field performance of a TBM in a highly fractured rock formation: A case study in Kozyatagi-Kadikoy metro tunnel, Turkey [J]. Tunnelling and Underground Space Technology, 2009, 24(4): 423-435. [9] LIU J Q, REN J B, GUO W. Thrust and torque characteristics based on a new cutter-head load model[J]. Chinese Journal of Mechanical Engineering, 2015,28(4): 801-809. [10] YANG K, XIA Y M, WU Y. Studies on rock-breaking of positive disc cutter and edge disc cutter [J]. Applied Mechanics and Materials, 2014, 508: 159-164. [11] YIN L J, MIAO C T, HE G W, et al. Study on the influence of joint spacing on rock fragmentation under TBM cutter by linear cutting test [J]. Tunnelling and Underground Space Technology, 2016, 57: 137-144. [12] ENTACHER M, SCHULLER E, GALLER R. Rock failure and crack propagation beneath disc cutters [J].Rock Mechanics and Rock Engineering, 2015, 48(4):1559-1572. [13] LI G, WANG B, CHEN Y D, et al. Numerical simulation of the rock fragmentation process induced bTBM cutters [J]. Applied Mechanics and Materials,2013, 249/250: 1069-1072. [14] CHO J W, JEON S, YU S H, et al. Optimum spacing of TBM disc cutters: A numerical simulation using the three-dimensional dynamic fracturing method [J]. Tunnelling and Underground Space Technology, 2010,25(3): 230-244. [15] ZHU X H, XIA Y M, OUYANG T, et al. Distribution law of excavating load of TBM disc cutter and cutterhead [J]. Applied Mechanics and Materials, 2014, 615:22-26. [16] ZHANG X H, XIA Y M, LIU J, et al. Study on characteristics of breaking rock by double edge central disc cutter under confining pressure [J]. Journal of Northeastern University (Natural Science), 2017,38(6): 839-844 (in Chinese). [17] SUN J, CHEN M, CHEN B, et al. Numerical simulaiton of influence factors for rock fragmentation by TBM cutter [J]. Rock and Soil Mechanics, 2011, 32(6):1891-1897 (in Chinese). [18] TAN Q, LI J, XIA Y, et al. Numerical research on rock fragmentation process by disc cutter[J]. Rock and Soil Mechanics, 2013, 34(9): 2707-2714 (in Chinese). [19] REN D J, SHEN J S, CHAI J C, et al. Analysis of disccutter failure in shield tunnelling using 3D circular cutting theory [J]. Engineering Failure Analysis, 2018,90: 23-35. [20] ENTACHER M, WINTER G, BUMBERGER T, et al. Cutter force measurement on tunnel boring machines -System design [J]. Tunnelling and Underground Space Technology, 2012, 31: 97-106. [21] HUANG X, LIU Q, CHEN L, et al. Cutting force measurement and analyses of shell cutters on a mixshield tunnelling machine [J]. Tunnelling and Underground Space Technology, 2018, 82: 325-345. [22] HUO J Z, WANG W Z, SUN W, et al. The multi-stage rock fragmentation load prediction model of tunnel boring machine cutter group based on dense core theory [J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1/2/3/4): 277-289. [23] XU H G, GENG Q, SUN Z C, et al. Full-scale granite cutting experiments using tunnel boring machine disc cutters at different free-face conditions [J]. Tunnelling and Underground Space Technology, 2021,108: 103719. [24] GENG Q, WEI Z Y, REN J H. New rock material definition strategy for FEM simulation of the rock cutting process by TBM disc cutters [J]. Tunnelling and Underground Space Technology, 2017, 65: 179-186. [25] GENG Q, WEI Z Y, MENG H, et al. Mechanical performance of TBM cutterhead in mixed rock ground conditions [J]. Tunnelling and Underground Space Technology, 2016, 57: 76-84. [26] ZHUO X J, LI P Q, HE F. Development of TBM boring test bench [J]. Tunnel Construction, 2013, 33(7): 615-618 (in Chinese). [27] WU Y, XIA Y, GUO J, et al. Influence of key parameters of a TBM gauge disc cutter on rock-breaking efficiency[J]. Modern Tunnelling Technology, 2015, 52(1):119-126 (in Chinese). [28] GENG Q, WEI Z Y, MENG H. An experimental research on the rock cutting process of the gage cutters for rock tunnel boring machine (TBM) [J]. Tunnelling and Underground Space Technology, 2016, 52: 182-191. [29] ZHANG Z H, MENG L, SUN F. Rock deformation equations and application to the study on slantingly installed disc cutter [J]. Acta Mechanica Sinica, 2014,30(4): 540-546. [30] XIA Y, WU Y, GUO J, et al. Numerical simulation of rock-breaking mechanism by gage disc cutter of TBM[J]. Journal of China Coal Society, 2014, 39(1):172-178 (in Chinese). [31] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of engineering rock mass: GB/T 50266—2013[S]. Beijing: China Planning Press, 2013 (in Chinese). [32] Ministry of Water Resources of the People’s Republic of China. Code for rock tests in water and hydropower projects: SL/T 264—2020 [S]. Beijing: China Water & Power Press, 2020 (in Chinese). [33] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. [34] ZHANG Z Q, ZHANG K J, DONG W J, et al. Study of rock-cutting process by disc cutters in mixed ground based on three-dimensional particle flow model [J]. Rock Mechanics and Rock Engineering, 2020, 53(8):3485-3506. [35] ASADI M S, RASOULI V, BARLA G. A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures [J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 649-675. [36] GHAZVINIAN A, SARFARAZI V, SCHUBERT W, et al. A study of the failure mechanism of planar nonpersistent open joints using PFC2D [J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 677-693. [37] LEE H, JEON S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression [J]. International Journal of Solids and Structures, 2011, 48(6): 979-999. [38] POTYONDY D O. The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions [J]. Geosystem Engineering, 2015, 18(1): 1-28. [39] TAROKH A, FAKHIMI A. Discrete element simulation of the effect of particle size on the size of fracture process zone in quasi-brittle materials [J]. Computers and Geotechnics, 2014, 62: 51-60. [40] WENG M C, LI H H. Relationship between the deformation characteristics and microscopic properties of sandstone explored by the bonded-particle model [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 56: 34-43. [41] ZHANG X P, WONG L N Y. Crack initiation, propagation and coalescence in rock-like material containing two flaws: A numerical study based on bonded-particle model approach [J]. Rock Mechanics and Rock Engineering, 2013, 46(5): 1001-1021. [42] CHO N, MARTIN C D, SEGO D C. A clumped particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 997-1010. [43] JIANG M J, FANG W, SIMA J. Calibration of micro-parameters of parallel bonded model for rocks [J]. Journal of Shandong University (Engineering Science), 2015, 45(4): 50-56 (in Chinese). [44] WU L, GUAN T M, LEI L. Discrete element model for performance analysis of cutterhead excavation system of EPB machine [J]. Tunnelling and Underground Space Technology, 2013, 37: 37-44. |
[1] | 董启朋1,卢正1,詹永祥1,王家强2. 土石混合体原位试验的颗粒流数值模拟分析[J]. 上海交通大学学报(自然版), 2013, 47(09): 1382-1389. |
[2] | 詹永祥1,姚海林1,董启朋1,王家强2,贺东平3. 松散体滑坡抗滑桩加固的土拱效应分析[J]. 上海交通大学学报(自然版), 2013, 47(09): 1372-1376. |
[3] | 周淮1, 2, 张孟喜1. 水平-竖向加筋土挡墙作用机理的离散元数值模拟[J]. 上海交通大学学报(自然版), 2012, 46(10): 1548-1552. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||