[1] YANG T H, CHENG Y T. The use of Mahalanobis-Taguchi system to improve flip-chip bumping heightinspection efficiency [J]. Microelectronics Reliability,2010, 50(3): 407-414.
[2] HUANG C L, HSU T S, LIU C M. The Mahalanobis-Taguchi system – neural network algorithm for dataminingin dynamic environments [J]. Expert Systemswith Applications, 2009, 36(3): 5475-5480.
[3] SHAKYA P, KULKARNI M S, DARPE A K. Bearingdiagnosis based on Mahalanobis-Taguchi-Gram-Schmidt method [J]. Journal of Sound and Vibration,2015, 337: 342-362.
[4] RIZAL M, GHANI J A, NUAWI M Z, et al. Cuttingtool wear classification and detection using multisensorsignals and Mahalanobis-Taguchi system [J].Wear, 2017, 376(15): 1759-1765.
[5] YAZID A M, RIJAL J K, AWALUDDIN M S, etal. Pattern recognition on remanufacturing automotivecomponent as support decision making usingMahalanobis-Taguchi system [J]. Procedia CIRP, 2015,26: 258-263.
[6] ZENG J H, ZENG F Z. The measurement scale ofMahalanobis-Taguchi system optimization based onfuzzy robustness discriminant criterion [J]. IndustrialEngineering and Management, 2008, 13(3): 52-55 (inChinese).
[7] IQUEBAL A S, PAL A, CEGLAREK D, et al. Enhancementof Mahalanobis-Taguchi system via roughsets based feature selection [J]. Expert Systems withApplications, 2014, 41(17): 8003-8015.
[8] NIU J L. Methods of classification and sort evaluationusing Mahalanobis-Taguchi system based onomni-optimizer algorithm and applications [D]. Nanjing:Nanjing University of Science & Technology,2012.
[9] RES′ ENDIZ E, MONCAYO-MART′INEZ L A, SOL′ISG. Binary ant colony optimization applied to variablescreening in the Mahalanobis-Taguchi system [J]. ExpertSystems with Applications, 2013, 40(2): 634-637.
[10] PAL A, MAITI J. Development of a hybrid methodologyfor dimensionality reduction in Mahalanobis-Taguchi system usingMahalanobis distance and binaryparticle swarm optimization [J]. Expert Systems withApplications, 2010, 37(2): 1286-1293.
[11] JIN X H, CHOWTWS. Anomaly detection of coolingfan and fault classification of induction motor usingMahalanobis-Taguchi system [J]. Expert Systems withApplications, 2013, 40(15): 5787-5795.
[12] LIPARAS D, LASKARIS N, ANGELIS L. Incorporatingresting state dynamics in the analysis of encephalographicresponses by means of the Mahalanobis-Taguchi strategy [J]. Expert Systems with Applications,2013, 40(7): 2621-2630.
[13] MAHALAKSHMI P, GANESAN K. MahalanobisTaguchi system based criteria selection for shrimpaquaculture development [J]. Computers and Electronicsin Agriculture, 2009, 65(2): 192-197.
[14] XI M L, SUN J, WU Y. Quantum-behaved particleswarm optimization with binary encoding [J]. Controland Decision, 2010, 25(1): 99-104. |