[1] |
BERTHOUEX P M, HUNTER W G, PALLESENL. Monitoring sewage treatment plants: Some qualitycontrol aspects [J]. Journal of Quality Technology,1978, 10(4): 139-149.
|
[2] |
MONTGOMERY D C, MASTRANGELO C M. Somestatistical process control methods for autocorrelateddata [J]. Journal of Quality Technology, 1991, 23(3):179-193.
|
[3] |
MARAGAH H D, WOODALL W H. The effect of autocorrelationon the retrospective X-chart [J]. Journalof Statistical Computation & Simulation, 1992,40(1/2): 29-42.
|
[4] |
MONTGOMERY D C. Statistical quality control: Amodern introduction [M]. 6th ed. New York: John Wiley& Sons, 2009.
|
[5] |
VASILOPOULOS A V, STAMBOULIS A P. Modificationof control chart limits in the presence of datacorrelation [J]. Journal of Quality Technology, 1978,10(1): 20-30.
|
[6] |
WARDELL D G, MOSKOWITZ H, PLANTE R D.Control charts in the presence of data correlation [J].Management Science, 1992, 38(8): 1084-1105.
|
[7] |
JIANG W, TSUI K L, WOODALL W H. A new SPCmonitoring method: The ARMA chart [J]. Technometrics,2000, 42(4): 399-410.
|
[8] |
LU C W, REYNOLDS M R Jr. CUSUM charts formonitoring an autocorrelated process [J]. Journal ofQuality Technology, 2001, 33(3): 316-334.
|
[9] |
YASHCHIN E. Performance of CUSUM controlschemes for serially correlated observations [J]. Technometrics,1993, 35(1): 37-52.
|
[10] |
CASTAGLIOLA P, TSUNG F. Autocorrelated SPCfor non-normal situations [J]. Quality and ReliabilityEngineering International, 2005, 21 (2): 131-161.
|
[11] |
SCHMID W. On the run length of a Shewhart chartfor correlated data [J]. Statistical Papers, 1995, 36(2):111-130.
|
[12] |
GARZA-VENEGAS J A, TERCERO-GOMEZ V G,HO LEE L, et al. Effect of autocorrelation estimatorson the performance of the ˉX -control chart [J]. Journalof Statistical Computation and Simulation, 2018,88(13): 2612-2630.
|
[13] |
YANG S F, YANG C M. An approach to controllingtwo dependent process steps with autocorrelated observations[J]. International Journal of Advanced ManufacturingTechnology, 2006, 29(1): 170-177.
|
[14] |
DAVOODI M, NIAKI S T A. Estimating the stepchangetime of the location parameter in multistageprocesses using MLE [J]. Quality and Reliability EngineeringInternational, 2012, 28: 843-855.
|
[15] |
PAN J N, LI C I,WU J J. A new approach to detectingthe process changes for multistage systems [J]. ExpertSystems with Applications, 2016, 62: 293-301.
|
[16] |
MASTRANGELO C M, MONTGOMERY D C. SPCwith correlated observations for the chemical and processindustries [J]. Quality and Reliability EngineeringInternational, 1995, 11 (2): 79-89.
|
[17] |
LU C W, REYNOLDS M R Jr. EWMA control chartsfor monitoring the mean of autocorrelated processes[J]. Journal of Quality Technology, 1999, 31(2): 166-188.
|
[18] |
ALWAN L C, ROBERTS H V. Time-series modelingfor statistical process control [J]. Journal of Business& Economics Statistics, 1988, 6(1): 87-95.
|
[19] |
MONTGOMERY D C, MASTRANGELO C M. Somestatistical process control methods for autocorrelateddata [J]. Journal of Quality Technology, 1991, 23 (3):200-202.
|
[20] |
WARDELL D G, MOSKOWITZ H, PLANTE RD. Run-length distributions of special-cause controlcharts for correlated processes [J]. Technometrics,1994, 36(1): 3-17.
|
[21] |
ZHANG N F. Detection capability of residual controlchart for stationary process data [J]. Journal of AppliedStatistics, 1997, 24(4): 475-492.
|
[22] |
VANHATALO E, KULAHCI M. The effect of autocorrelationon the Hotelling T2 control chart [J]. Qualityand Reliability Engineering International, 2015, 31(8):1779-1796.
|
[23] |
CHIU C C, CHEN M K, LEE K M. Shifts recognitionin correlated process data using a neural network [J].International Journal of Systems Science, 2001, 32(2):137-143.
|
[24] |
ARKAT J, NIAKI S T A, ABBASI B. Artificial neuralnetworks in applying MCUSUM residuals charts forAR(1) processes [J]. Applied Mathematics and Computation,2007, 189(2): 1889-1901.
|
[25] |
PACELLA M, SEMERARO Q. Using recurrent neuralnetworks to detect changes in autocorrelated processesfor quality monitoring [J]. Computers & Industrial Engineering,2007, 52(4): 502-520.
|
[26] |
CAMARGO M E, FILHO W P, RUSSO S L, et al.Control charts for monitoring autocorrelated processesbased on neural networks model [C]//InternationalConference on Computers & Industrial Engineering.Troyes, France: IEEE, 2009: 1881-1884.
|
[27] |
YU J L, HAN Y, MIAO M X, et al. Self-related processresidual control chart based on neural network[C]//International Symposium on Knowledge Acquisitionand Modeling. London, UK: Atlantis Press, 2015:41-43.
|
[28] |
YANG H H, HUANG M L, YANG S W. Integratingauto-associative neural networks with Hotelling T 2control charts for wind turbine fault detection [J]. Energies,2015, 8: 12100-12115.
|
[29] |
RAI A, UPADHYAY S H. The use of MD-CUMSUMand NARX neural network for anticipating the remaininguseful life of bearings [J]. Measurement, 2017, 111:397-410.
|
[30] |
ALSHRAIDEH H, RUNGER G. Process monitoringusing hidden Markov models [J]. Quality and ReliabilityEngineering International, 2015, 30(8): 1379-1387.
|
[31] |
ROSS S M. Introduction to probability models [M].11th ed. Beijing: Posts & Telecom Press, 2015.
|
[32] |
CHEN Z, XIA T B, LI Y P, et al. Degradation modelingand classification of mixed populations using segmentalcontinuous hidden Markov models [J]. Qualityand Reliability Engineering International, 2018,34(5): 807-823.
|