[1] |
SUGANO N. Computer-assisted orthopedic surgery[J]. Journal of Orthopaedic Science, 2003, 8(3): 442-448.
|
[2] |
VICECONTI M, ZANNONI C, TESTI D, et al. CTdata sets surface extraction for biomechanical modelingof long bones [J]. Computer Methods and Programsin Biomedicine, 1999, 59(3): 159-166.
|
[3] |
ZOROOFI R A, SATO Y, NISHII T, et al. Automatedsegmentation of necrotic femoral head from 3D MRdata [J]. Computerized Medical Imaging & Graphics,2004, 28(5): 267-278.
|
[4] |
GANZ R, GILL T J, GAUTIER E, et al. Surgical dislocationof the adult hip: A technique with full accessto the femoral head and acetabulum without the riskof avascular necrosis [J]. The Bone & Joint Journal,2001, 83(8): 1119-1124.
|
[5] |
CHENG Y Z, ZHOU S J, WANG Y D, et al. Automaticsegmentation technique for acetabulum andfemoral head in CT images [J]. Pattern Recognition,2013, 46(11): 2969-2984.
|
[6] |
HILDEBRAND T, LAIB A, M¨ULLER R, et al. Directthree-dimensional morphometric analysis of humancancellous bone: Microstructural data from spine, femur,iliac crest, and calcaneus [J]. Journal of Bone &Mineral Research, 1999, 14(7): 1167-1174.
|
[7] |
MCINERNEY T, TERZOPOULOS D. A dynamic finiteelement surface model for segmentation and trackingin multidimensional medical images with applicationto cardiac 4D image analysis [J]. Journal of ComputerizedMedical Imaging and Graphics, 1995, 19(1):69-83.
|
[8] |
KANG Y, ENGELKE K, KALENDER W A. A newaccurate and precise 3-D segmentation method forskeletal structures in volumetric CT data. [J]. IEEETransactions on Medical Imaging, 2003, 22(5): 586-598.
|
[9] |
KAINMUELLER D, LAMECKER H, ZACHOW S, etal. An articulated statistical shape model for accuratehip joint segmentation [C]//Engineering in Medicineand Biology Society, 2009 (EMBC 2009): InternationalConference of the IEEE. [s.l.]: IEEE, 2009:6345-6351.
|
[10] |
COMTAT C, KINAHAN P E, DEFRISE M, et al. Fastreconstruction of 3D PET data with accurate statisticalmodeling [J]. IEEE Transactions on Nuclear Science,1998, 45(3): 1083-1089.
|
[11] |
MISHRA A K, FIEGUTH PW, CLAUSID A.Decoupledactive contour (DAC) for boundary detection [J].IEEE Transactions on Pattern Analysis and MachineIntelligence, 2011, 33(2): 310-324.
|
[12] |
XU M H, THOMPSON P M, TOGA A W. An adaptivelevel set segmentation on a triangulated mesh [J].IEEE Transactions on Medical Imaging, 2004, 23(2):191-201.
|
[13] |
KASS M, WITKIN A, TERZOPOULOS D. Snakes:Active contour models [J]. International Journal ofComputer Vision, 1988, 1(4): 321-331.
|
[14] |
HAAS B, CORADI T, SCHOLZ M, et al. Automaticsegmentation of thoracic and pelvic CT images for radiotherapyplanning using implicit anatomic knowledgeand organ-specific segmentation strategies [J].Physics in Medicine and Biology, 2008, 53(6): 1751-1771.
|
[15] |
CHICA A, MONCL′US E, BRUNET P, et al. Exampleguidedsegmentation [J]. Graphical Models, 2012,74(6), 302-310.
|
[16] |
BIENIEK A, MOGA A. An efficient watershed algorithmbased on connected components [J]. PatternRecognition, 2000, 33(6): 907-916.
|
[17] |
KIM Y, KIM D. A fully automatic vertebra segmentationmethod using 3D deformable fences [J]. ComputerizedMedical Imaging and Graphics, 2009, 33(5):343-352.
|
[18] |
ZOROOFI R A, SATO Y, SASAMA T, et al. Automatedsegmentation of acetabulum and femoral headfrom 3-D CT images [J]. IEEE Transactions on InformationTechnology in Biomedicine, 2003, 7(4): 329-343.
|
[19] |
DROOGENBROECK M V, TALBOT H. Fast computationof morphological operations with arbitrarystructuring elements [J]. Pattern Recognition Letters,1996, 17(14): 1451-1460.
|
[20] |
HUANG Y, WANG S. Multilevel thresholding methodsfor image segmentation with Otsu based on QPSO[C]//2008 Congress on Image and Signal Processing.[s.l.]: IEEE Computer Society, 2008: 701-705.
|
[21] |
ZHANG Y D,WU L N. Optimal multi-level thresholdingbased on maximum tsallis entropy via an artificialbee colony approach [J]. Entropy, 2011, 13(4): 841-859.
|
[22] |
LIU Y, ZHAO Y L. Quick approach of multi-thresholdOtsu method for image segmentation [J]. Journal ofComputer Applications, 2011, 31(12): 3363-3365 (inChinese).
|
[23] |
ADAMS R, BISCHOF L. Seeded region growing [J].IEEE Transactions on Pattern Analysis and MachineIntelligence, 1994, 16(6): 641-647.
|
[24] |
DEHMESHKI J, AMIN H, VALDIVIESO M, et al.Segmentation of pulmonary nodules in thoracic CTscans: A region growing approach [J]. IEEE Transactionson Medical Imaging, 2008, 27(4): 467-480.
|
[25] |
KUMARI V V, SURIYANARAYANAN N. Blood vesselextraction using Wiener filter and morphologicaloperation [J]. International Journal of Computer Scienceand Emerging Technology, 2010, 1(4): 7-10.
|
[26] |
SERLIE I, TRUYEN R, FLORIE J, et al. Computedcleansing for virtual colonoscopy using a threematerialtransition model [C]// Medical Image Computingand Computer-Assisted Intervention: MICCAI2003. Berlin Heidelberg: Springer, 2003: 175-183.
|
[27] |
POHL K M, FISHER J, GRIMSON W E, et al. ABayesian model for joint segmentation and registration[J]. Neuroimage, 2006, 31(1): 228-239.
|
[28] |
QI Y Y, XIONG W, LEOW W K, et al. Semiautomaticsegmentation of liver tumors from CT scansusing bayesian rule-based 3D region growing [EB/OL].http://www.comp.nus.edu.sg/~leowwk/papers/miccai2008-tumor1.pdf
|
[29] |
LORENSEN W E, CLINE H E. Marching cubes: Ahigh resolution 3D surface construction algorithm [J].ACM SIGGRAPHY Computer Graphics, 1987, 21(4):163-169.
|
[30] |
GELAUDE F, VANDER SLOTEN J, LAUWERS B.Accuracy assessment of CT-based outer surface femurmeshes [J]. Computer Aided Surgery, 2008, 13(4): 188-199.
|